Beispiel #1
0
    def Run(self, W, x, eps, seed):
        x = x.flatten()
        prng = np.random.RandomState(seed)

        if len(self.domain_shape) == 2:
            # apply hilbert transform to convert 2d domain into 1d
            hilbert_mapping = mapper.HilbertTransform(
                self.domain_shape).mapping()
            domain_reducer = transformation.ReduceByPartition(hilbert_mapping)

            x = domain_reducer.transform(x)
            W = W.get_matrix() * support.expansion_matrix(hilbert_mapping)

            dawa = pmapper.Dawa(eps, self.ratio, self.approx)
            mapping = dawa.mapping(x, prng)
        elif len(self.domain_shape) == 1:
            W = W.get_matrix()
            dawa = pmapper.Dawa(eps, self.ratio, self.approx)
            mapping = dawa.mapping(x, prng)

        reducer = transformation.ReduceByPartition(mapping)
        x_bar = reducer.transform(x)
        W_bar = W * support.expansion_matrix(mapping)

        M_bar = selection.GreedyH(x_bar.shape, W_bar).select()
        y = measurement.Laplace(M_bar,
                                eps * (1 - self.ratio)).measure(x_bar, prng)
        x_bar_hat = inference.LeastSquares().infer(M_bar, y)

        x_bar_hat_exp = support.expansion_matrix(mapping) * x_bar_hat

        if len(self.domain_shape) == 1:
            return x_bar_hat_exp
        elif len(self.domain_shape) == 2:
            return support.expansion_matrix(hilbert_mapping) * x_bar_hat_exp
Beispiel #2
0
    def Run(self, W, x, eps, seed):
        x = x.flatten()
        prng = np.random.RandomState(seed)

        if self.workload_based:
            mapping = mapper.WorkloadBased(W).mapping()
            reducer = transformation.ReduceByPartition(mapping)
            x = reducer.transform(x)
            # Reduce workload
            # W = support.reduce_queries(mapping, W)
            W = W * support.expansion_matrix(mapping)

        # Orange AHPparition(PA) operator in paper can be expressed
        # as the following sequence of simpler opeartors
        M = selection.Identity(x.shape).select()
        y = measurement.Laplace(M, self.ratio * eps).measure(x, prng)
        xest = inference.AHPThresholding(self.eta, self.ratio).infer(M, y, eps)
        mapping = mapper.AHPCluster(xest, (1 - self.ratio) * eps).mapping()

        # TR
        reducer = transformation.ReduceByPartition(mapping)

        x_bar = reducer.transform(x)
        # SI LM LS
        M_bar = selection.Identity(x_bar.shape).select()
        y_bar = measurement.Laplace(M_bar, eps * (1 - self.ratio)).measure(
            x_bar, prng)
        x_bar_hat = inference.LeastSquares().infer(M_bar, y_bar)
        x_hat = support.expansion_matrix(mapping) * x_bar_hat

        return x_hat
Beispiel #3
0
    def Run(self, W, x, eps, seed):
        domain_dimension = len(self.domain_shape)
        eps_share = util.old_div(float(eps), domain_dimension)

        x = x.flatten()
        prng = np.random.RandomState(seed)
        
        Ms = []
        ys = []
        scale_factors = []
        for i in range(domain_dimension):
            # Reducde domain to get marginals
            marginal_mapping = mapper.MarginalPartition(
                domain_shape=self.domain_shape, proj_dim=i).mapping()
            reducer = transformation.ReduceByPartition(marginal_mapping)
            x_i = reducer.transform(x)

            if self.domain_shape[i] < 50:
                # run identity subplan
                M_i = selection.Identity(x_i.shape).select()
                y_i = measurement.Laplace(M_i, eps_share).measure(x_i, prng)
                noise_scale_factor = laplace_scale_factor(
                    M_i, eps_share)
                
            else:
                # run dawa subplan
                W = get_matrix(W)

                W_i = W * support.expansion_matrix(marginal_mapping)

                dawa = pmapper.Dawa(eps_share, self.ratio, self.approx)
                mapping = dawa.mapping(x_i, prng)

                reducer = transformation.ReduceByPartition(mapping)
                x_bar = reducer.transform(x_i)
                W_bar = W_i * support.expansion_matrix(mapping)

                M_bar = selection.GreedyH(x_bar.shape, W_bar).select()
                y_i = measurement.Laplace(
                    M_bar, eps_share * (1 - self.ratio)).measure(x_bar, prng)

                noise_scale_factor = laplace_scale_factor(
                    M_bar, eps_share * (1 - self.ratio))

                # expand the dawa reduction
                M_i = M_bar * support.reduction_matrix(mapping)

            MM = M_i * support.reduction_matrix(marginal_mapping)
            Ms.append(MM)
            ys.append(y_i)
            scale_factors.append(noise_scale_factor)

        x_hat = inference.LeastSquares(method='lsmr').infer(Ms, ys, scale_factors)

        return x_hat  
Beispiel #4
0
    def Run(self, W, x, eps, seed):
        x = x.flatten()
        prng = np.random.RandomState(seed)

        if self.workload_based:
            W = get_matrix(W)
            mapping = mapper.WorkloadBased(W).mapping() 
            reducer = transformation.ReduceByPartition(mapping)
            x = reducer.transform(x)
            # Reduce workload
            # W = support.reduce_queries(mapping, W)
            W = W * support.expansion_matrix(mapping)
            self.domain_shape = x.shape


        if len(self.domain_shape) == 2:
            # apply hilbert transform to convert 2d domain into 1d
            hilbert_mapping = mapper.HilbertTransform(self.domain_shape).mapping()
            domain_reducer = transformation.ReduceByPartition(hilbert_mapping)

            x = domain_reducer.transform(x)

            W = get_matrix(W)
            W = W * support.expansion_matrix(hilbert_mapping)

            dawa = pmapper.Dawa(eps, self.ratio, self.approx)
            mapping = dawa.mapping(x, prng)

        elif len(self.domain_shape) == 1:

            W = get_matrix(W)
            dawa = pmapper.Dawa(eps, self.ratio, self.approx)
            mapping = dawa.mapping(x, prng)


        reducer = transformation.ReduceByPartition(mapping)
        x_bar = reducer.transform(x)
        W_bar = W * support.expansion_matrix(mapping)

        M_bar = selection.GreedyH(x_bar.shape, W_bar).select()
        if not isinstance(M_bar, np.ndarray):
            M_bar = M_bar.toarray()
        y = measurement.Laplace(M_bar, eps*(1-self.ratio)).measure(x_bar, prng)
        x_bar_hat = inference.LeastSquares().infer(M_bar, y)

        x_bar_hat_exp = support.expansion_matrix(mapping) * x_bar_hat


        if len(self.domain_shape) == 1:
            return x_bar_hat_exp
        elif len(self.domain_shape) == 2:
            return support.expansion_matrix(hilbert_mapping) * x_bar_hat_exp
Beispiel #5
0
    def Run(self, W, x, eps, seed):
        x = x.flatten()            
        prng = np.random.RandomState(seed)

        striped_vectors = mapper.Striped(self.domain, self.stripe_dim).partitions()
        hd_vector = support.combine_all(striped_vectors)
        striped_mapping = hd_vector.flatten()

        x_sub_list = meta.SplitByPartition(striped_mapping).transform(x)

        Ms = []
        ys = []
        scale_factors = []
        group_idx = sorted(set(striped_mapping))

        # Given a group id on the full vector, recover the group id for each partition
        # put back in loop to save memory
        self.subgroups = {}
        for i in group_idx:
            selected_idx = np.where(hd_vector == i)
            ans = [p[i[0]] for p, i in zip(striped_vectors, selected_idx)]
            self.subgroups[i] = ans

        for i in group_idx: 
            x_i = x_sub_list[group_idx.index(i)]
            
            # overwriting standard projection for efficiency
            W_i = self.project_workload(W, striped_vectors, hd_vector, i)

            dawa = pmapper.Dawa(eps, self.ratio, self.approx)
            mapping = dawa.mapping(x_i, prng)
            reducer = transformation.ReduceByPartition(mapping)
            x_bar = reducer.transform(x_i)
            W_bar = W_i * support.expansion_matrix(mapping)

            M_bar = selection.GreedyH(x_bar.shape, W_bar).select()
            if not isinstance(M_bar, np.ndarray):
                M_bar = M_bar.toarray()

            y_i = measurement.Laplace(
                M_bar, eps * (1 - self.ratio)).measure(x_bar, prng)

            noise_scale_factor = laplace_scale_factor(
                M_bar, eps * (1 - self.ratio))

            # convert the measurement back to the original domain for inference
            P_i = support.projection_matrix(striped_mapping, i)
            M_i = (M_bar * support.reduction_matrix(mapping)) * P_i

            Ms.append(M_i)
            ys.append(y_i)
            scale_factors.append(noise_scale_factor)

        x_hat = inference.LeastSquares().infer(Ms, ys, scale_factors)

        return x_hat
Beispiel #6
0
    def Run(self, W, x, eps, seed):
        x = x.flatten()
        prng = np.random.RandomState(seed)
        if self.workload_based:
            mapping = mapper.WorkloadBased(W).mapping()
            reducer = transformation.ReduceByPartition(mapping)
            x = reducer.transform(x)
            # Reduce workload
            # W = support.reduce_queries(mapping, W)
            W = W * support.expansion_matrix(mapping)

        M = selection.Identity(x.shape).select()
        y = measurement.Laplace(M, eps).measure(x, prng)
        x_hat = inference.LeastSquares().infer(M, y)

        return x_hat
Beispiel #7
0
    def Run(self, W, x, eps, seed):
        x = x.flatten()            
        prng = np.random.RandomState(seed)

        striped_mapping = mapper.Striped(self.domain, self.stripe_dim).mapping()
        x_sub_list = meta.SplitByPartition(striped_mapping).transform(x)

        Ms = []
        ys = []
        scale_factors = []
        group_idx = sorted(set(striped_mapping))

        W = get_matrix(W)

        for i in group_idx: 
            x_i = x_sub_list[group_idx.index(i)]
            P_i = support.projection_matrix(striped_mapping, i)
            W_i = W * P_i.T

            dawa = pmapper.Dawa(eps, self.ratio, self.approx)
            mapping = dawa.mapping(x_i, prng)
            reducer = transformation.ReduceByPartition(mapping)
            x_bar = reducer.transform(x_i)
            W_bar = W_i * support.expansion_matrix(mapping)

            M_bar = selection.GreedyH(x_bar.shape, W_bar).select()

            if not isinstance(M_bar, np.ndarray):
                M_bar = M_bar.toarray()

            y_i = measurement.Laplace(
                M_bar, eps * (1 - self.ratio)).measure(x_bar, prng)

            noise_scale_factor = laplace_scale_factor(
                M_bar, eps * (1 - self.ratio))

            M_i = (M_bar * support.reduction_matrix(mapping)) * P_i

            Ms.append(M_i)
            ys.append(y_i)
            scale_factors.append(noise_scale_factor)

        x_hat = inference.LeastSquares().infer(Ms, ys, scale_factors)

        return x_hat
Beispiel #8
0
    def Run(self, W, x, eps, seed):
        x = x.flatten()
        prng = np.random.RandomState(seed)
        if self.workload_based:
            W = get_matrix(W)
            mapping = mapper.WorkloadBased(W).mapping() 
            reducer = transformation.ReduceByPartition(mapping)
            x = reducer.transform(x)
            # Reduce workload
            # W = support.reduce_queries(mapping, W)
            W = W * support.expansion_matrix(mapping)
            self.domain_shape = x.shape

        M = selection.HB(self.domain_shape).select()

        if not isinstance(M, np.ndarray):
            M = M.toarray()

        y  = measurement.Laplace(M, eps).measure(x, prng)
        x_hat = inference.LeastSquares().infer(M, y)

        return x_hat