Beispiel #1
0
def demo_custom_env_finance_rl_nas89():
    args = Arguments(
        if_on_policy=True
    )  # hyper-parameters of on-policy is different from off-policy
    args.random_seed = 1943

    from elegantrl2.agent import AgentPPO
    args.agent = AgentPPO()
    args.agent.cri_target = True
    args.agent.lambda_entropy = 0.04

    from envs.FinRL.StockTrading import StockEnvDOW30, StockEnvNAS89, StockVecEnvNAS89
    args.gamma = 0.999

    if_dow30_daily = 1
    if if_dow30_daily:
        args.env = StockEnvDOW30(if_eval=False, gamma=args.gamma)
        args.env_eval = StockEnvDOW30(if_eval=True, gamma=args.gamma)
    else:  # elif if_nas89_minute:
        args.env = StockEnvNAS89(if_eval=False, gamma=args.gamma)
        args.env_eval = StockEnvNAS89(if_eval=True, gamma=args.gamma)

    args.repeat_times = 2**4
    args.learning_rate = 2**-14
    args.net_dim = int(2**8 * 1.5)
    args.batch_size = args.net_dim * 4
    args.target_step = args.env.max_step

    args.eval_gap = 2**8
    args.eval_times1 = 2**0
    args.eval_times2 = 2**1
    args.break_step = int(16e6)
    args.if_allow_break = False

    if_single_env = 1
    if if_single_env:
        args.gpu_id = 0
        args.worker_num = 4
        train_and_evaluate_mp(args)

    if_batch_env = 0
    if if_batch_env:
        args.env = StockVecEnvNAS89(if_eval=False, gamma=args.gamma, env_num=2)
        args.gpu_id = 3
        args.random_seed += args.gpu_id
        args.worker_num = 2
        train_and_evaluate_mp(args)

    if_multi_learner = 0
    if if_multi_learner:
        args.env = StockVecEnvNAS89(if_eval=False, gamma=args.gamma, env_num=2)
        args.gpu_id = (0, 1)
        args.worker_num = 2
        train_and_evaluate_mg(args)
Beispiel #2
0
def demo_custom_env_finance_rl_dow30():  # 1.7+ 2.0+
    args = Arguments(
        if_on_policy=True
    )  # hyper-parameters of on-policy is different from off-policy
    args.random_seed = 19430

    from elegantrl2.agent import AgentPPO
    args.agent = AgentPPO()
    args.agent.cri_target = True
    args.agent.lambda_entropy = 0.02

    args.gamma = 0.995

    from envs.FinRL.StockTrading import StockEnvDOW30, StockVecEnvDOW30
    args.env = StockEnvDOW30(if_eval=False, gamma=args.gamma)
    args.env_eval = StockEnvDOW30(if_eval=True, gamma=args.gamma)

    args.repeat_times = 2**4
    args.learning_rate = 2**-14
    args.net_dim = 2**8
    args.batch_size = args.net_dim

    args.eval_gap = 2**7
    args.eval_times1 = 2**0
    args.eval_times2 = 2**1
    args.break_step = int(10e6)
    args.if_allow_break = False

    if_single_env = 0
    if if_single_env:
        args.gpu_id = int(sys.argv[-1][-4])
        args.random_seed += int(args.gpu_id)
        args.target_step = args.env.max_step * 4
        args.worker_num = 4
        train_and_evaluate_mp(args)

    if_batch_env = 1
    if if_batch_env:
        args.env = StockVecEnvDOW30(if_eval=False, gamma=args.gamma, env_num=4)
        args.gpu_id = int(sys.argv[-1][-4])
        args.random_seed += args.gpu_id
        args.target_step = args.env.max_step
        args.worker_num = 4
        train_and_evaluate_mp(args)

    if_multi_learner = 0
    if if_multi_learner:
        args.env = StockVecEnvDOW30(if_eval=False, gamma=args.gamma, env_num=2)
        args.gpu_id = (0, 1)
        args.worker_num = 2
        train_and_evaluate_mg(args)
Beispiel #3
0
def demo_custom_env_finance_rl_nas89():  # 1.7+ 2.0+
    args = Arguments(
        if_on_policy=True
    )  # hyper-parameters of on-policy is different from off-policy
    args.random_seed = 19430

    from elegantrl2.agent import AgentPPO
    args.agent = AgentPPO()
    args.agent.lambda_entropy = 0.02

    from envs.FinRL.StockTrading import StockEnvNAS89
    args.gamma = 0.999
    args.env = StockEnvNAS89(if_eval=False,
                             gamma=args.gamma,
                             turbulence_thresh=30)
    args.eval_env = StockEnvNAS89(if_eval=True,
                                  gamma=args.gamma,
                                  turbulence_thresh=15)

    args.net_dim = 2**9
    args.repeat_times = 2**4
    args.learning_rate = 2**-14
    args.batch_size = args.net_dim * 4

    args.eval_gap = 2**8
    args.eval_times1 = 2**0
    args.eval_times2 = 2**1
    args.break_step = int(8e6)
    args.if_allow_break = False

    if_single_proc = 0
    if if_single_proc:
        args.gpu_id = int(sys.argv[-1][-4])
        args.random_seed += int(args.gpu_id)
        args.target_step = args.env.max_step * 4
        train_and_evaluate(args)

    if_single_env = 1
    if if_single_env:
        args.gpu_id = int(sys.argv[-1][-4])
        args.random_seed += int(args.gpu_id)
        args.target_step = args.env.max_step * 1
        args.worker_num = 4
        train_and_evaluate_mp(args)

    if_multi_learner = 0
    if if_multi_learner:
        args.gpu_id = (2, 3) if len(sys.argv) == 1 else eval(
            sys.argv[-1])  # python main.py -GPU 0,1
        args.repeat_times = 2**4
        args.target_step = args.env.max_step
        args.worker_num = 4
        train_and_evaluate_mg(args)

    if_batch_env = 0
    if if_batch_env:
        from envs.FinRL.StockTrading import StockVecEnvNAS89
        args.env = StockVecEnvNAS89(if_eval=False, gamma=args.gamma, env_num=2)
        args.gpu_id = int(sys.argv[-1][-4])
        args.random_seed += args.gpu_id
        args.target_step = args.env.max_step
        args.worker_num = 4
        train_and_evaluate_mp(args)