Beispiel #1
0
def __csd_correlation(v, m):
    '''compute correlation coefficient between CSD estimate and CSD
    for a given source diameter'''
    if m == 'delta':
        icsd_input[m].update({'diam': v * pq.m})
        _icsd = icsd.DeltaiCSD(**icsd_input[m])
        corrcoef = pl.corrcoef(
            CSD_filtered.flatten(),
            pl.array(_icsd.filter_csd(_icsd.get_csd()) / pq.m).flatten())
    elif m == 'step':
        icsd_input[m].update({'diam': v * pq.m})
        _icsd = icsd.StepiCSD(**icsd_input[m])
        corrcoef = pl.corrcoef(
            CSD_filtered.flatten(),
            pl.array(_icsd.filter_csd(_icsd.get_csd()) / pq.m).flatten())
    elif m == 'spline':
        icsd_input[m].update({'diam': v * pq.m})
        _icsd = icsd.SplineiCSD(**icsd_input[m])
        corrcoef = pl.corrcoef(
            CSD76ptF.flatten(),
            pl.array(_icsd.filter_csd(_icsd.get_csd()) / pq.m).flatten())
    else:
        raise Exception, 'm = %s should be either [delta, step, spline]' % m

    return corrcoef[0, -1]
Beispiel #2
0
    def test_StepiCSD_units_04(self):
        '''test non-continous z_j array'''
        # set some parameters for ground truth csd and csd estimates., e.g.,
        # we will use same source diameter as in ground truth

        # contact point coordinates
        z_j = np.arange(21) * 1E-4 * pq.m

        # source coordinates
        z_i = z_j

        # current source density magnitude
        C_i = np.zeros(z_i.size) * pq.A / pq.m**3
        C_i[7:12:2] += np.array([-.5, 1., -.5]) * pq.A / pq.m**3

        # source radius (delta, step)
        R_i = np.ones(z_i.size) * 1E-3 * pq.m

        # source height (cylinder)
        h_i = np.ones(z_i.size) * 1E-4 * pq.m

        # conductivity, use same conductivity for top layer (z_j < 0)
        sigma = 0.3 * pq.S / pq.m
        sigma_top = sigma

        # flag for debug plots
        plot = False

        # get LFP and CSD at contacts
        phi_j, C_i = get_lfp_of_cylinders(z_j, z_i, C_i, R_i, h_i,
                                          sigma, plot)
        inds = np.delete(np.arange(21), 5)
        step_input = {
            'lfp': phi_j[inds],
            'coord_electrode': z_j[inds],
            'diam': R_i[inds] * 2,
            'sigma': sigma,
            'sigma_top': sigma,
            'h': h_i[inds],
            'tol': 1E-12,          # Tolerance in numerical integration
            'f_type': 'gaussian',
            'f_order': (3, 1),
        }
        step_icsd = icsd.StepiCSD(**step_input)
        csd = step_icsd.get_csd()

        self.assertEqual(C_i.units, csd.units)
        nt.assert_array_almost_equal(C_i[inds], csd)
Beispiel #3
0
def __csd_error(v, m):
    '''using squared difference summed'''
    if m == 'delta':
        icsd_input[m].update({'diam': v * pq.m})
        _icsd = icsd.DeltaiCSD(**icsd_input[m])
        error = (
            (pl.array(_icsd.filter_csd(_icsd.get_csd()) /
                      (100E-6 * pq.m)).reshape(CSD_filtered.size) * 1E-9 -
             CSD_filtered.reshape(CSD_filtered.size))**2).sum()
    elif m == 'step':
        icsd_input[m].update({'diam': v * pq.m})
        _icsd = icsd.StepiCSD(**icsd_input[m])
        error = ((pl.array(_icsd.filter_csd(_icsd.get_csd())).reshape(
            CSD_filtered.size) * 1E-9 -
                  CSD_filtered.reshape(CSD_filtered.size))**2).sum()
    elif m == 'spline':
        icsd_input[m].update({'diam': v * pq.m})
        _icsd = icsd.SplineiCSD(**icsd_input[m])
        error = ((pl.array(_icsd.filter_csd(_icsd.get_csd())).reshape(
            CSD76ptF.size) * 1E-9 - CSD76ptF.reshape(CSD76ptF.size))**2).sum()
    else:
        raise Exception, 'm = %s should be either [delta, step, spline]' % m

    return error
Beispiel #4
0
            _icsd.filter_csd(_icsd.get_csd()) / (100E-6 * pq.m) * 1E-9
        })

        my_errors['delta'], my_diams['delta'], diam_best['delta'] = \
            minimize_icsd_error_brute(m)
        icsd_input[m].update({'diam': diam_best['delta'] * pq.m})

        print 'best diameter delta: %.5e' % diam_best['delta']
        _icsd = icsd.DeltaiCSD(**icsd_input[m])
        icsd_output.update({
            'icsd_delta':
            _icsd.filter_csd(_icsd.get_csd()) / (100E-6 * pq.m) * 1E-9
        })

    elif m == 'step':
        _icsd = icsd.StepiCSD(**icsd_input[m])
        icsd_output.update(
            {'icsd_step': _icsd.filter_csd(_icsd.get_csd()) * 1E-9})

        my_errors['step'], my_diams['step'], diam_best['step'] = \
            minimize_icsd_error_brute(m)
        icsd_input[m].update({'diam': diam_best['step'] * pq.m})

        print 'best diameter step: %.5e' % diam_best['step']

        _icsd = icsd.StepiCSD(**icsd_input[m])
        icsd_output.update(
            {'icsd_step': _icsd.filter_csd(_icsd.get_csd()) * 1E-9})

    elif m == 'spline':
        _icsd = icsd.SplineiCSD(**icsd_input[m])