def test__UE_surrogate(self):
     mat = self.binary_sts
     pattern_hash = np.array([4])
     N = 3
     _, rate_avg_surr, _, n_emp_surr,indices_surr =\
     ue._UE(mat, N, pattern_hash, method='surrogate_TrialByTrial', n_surr=100)
     _, rate_avg, _, n_emp,indices =\
     ue._UE(mat, N, pattern_hash, method='analytic_TrialByTrial')
     self.assertTrue(np.allclose(n_emp ,n_emp_surr))
     self.assertTrue(np.allclose(rate_avg ,rate_avg_surr))
     for item0_cnt,item0 in enumerate(indices):
         for item1_cnt,item1 in enumerate(item0):
             self.assertTrue(np.allclose(indices_surr[item0_cnt][item1_cnt],item1))
 def test__UE_surrogate(self):
     mat = self.binary_sts
     pattern_hash = np.array([4])
     N = 3
     _, rate_avg_surr, _, n_emp_surr,indices_surr =\
     ue._UE(mat, N, pattern_hash, method='surrogate_TrialByTrial', n_surr=100)
     _, rate_avg, _, n_emp,indices =\
     ue._UE(mat, N, pattern_hash, method='analytic_TrialByTrial')
     self.assertTrue(np.allclose(n_emp ,n_emp_surr))
     self.assertTrue(np.allclose(rate_avg ,rate_avg_surr))
     for item0_cnt,item0 in enumerate(indices):
         for item1_cnt,item1 in enumerate(item0):
             self.assertTrue(np.allclose(indices_surr[item0_cnt][item1_cnt],item1))
Beispiel #3
0
 def test__UE_default(self):
     mat = self.binary_sts
     pattern_hash = np.array([4, 6])
     expected_S = np.array([-0.26226523, 0.04959301])
     expected_idx = [[[0], [3]], [[], [2, 4]]]
     expected_nemp = np.array([1., 3.])
     expected_nexp = np.array([1.04, 2.56])
     expected_rate = np.array([0.9, 0.7, 0.6])
     S, rate_avg, n_exp, n_emp, indices = ue._UE(mat, pattern_hash)
     self.assertTrue(np.allclose(S, expected_S))
     self.assertTrue(np.allclose(n_exp, expected_nexp))
     self.assertTrue(np.allclose(n_emp, expected_nemp))
     self.assertTrue(np.allclose(expected_rate, rate_avg))
     for item0_cnt, item0 in enumerate(indices):
         for item1_cnt, item1 in enumerate(item0):
             self.assertTrue(
                 np.allclose(expected_idx[item0_cnt][item1_cnt], item1))
 def test__UE_default(self):
     mat = self.binary_sts
     pattern_hash = np.array([4,6])
     N = 3
     expected_S = np.array([-0.26226523,  0.04959301])
     expected_idx = [[[0], [3]], [[], [2, 4]]]
     expected_nemp = np.array([ 1.,  3.])
     expected_nexp = np.array([ 1.04,  2.56])
     expected_rate = np.array([ 0.9,  0.7,  0.6])
     S, rate_avg, n_exp, n_emp,indices = ue._UE(mat,N,pattern_hash)
     self.assertTrue(np.allclose(S ,expected_S))
     self.assertTrue(np.allclose(n_exp ,expected_nexp))
     self.assertTrue(np.allclose(n_emp ,expected_nemp))
     self.assertTrue(np.allclose(expected_rate ,rate_avg))
     for item0_cnt,item0 in enumerate(indices):
         for item1_cnt,item1 in enumerate(item0):
             self.assertTrue(np.allclose(expected_idx[item0_cnt][item1_cnt],item1))