Beispiel #1
0
def main():
    print(sys.version)
    print(torch.__version__)
    print(torch.version.cuda)
    print("Conda env: \"%s\"" % os.environ.get("CONDA_DEFAULT_ENV", ""))

    option_spec = PyOptionSpec()
    option_spec.merge(PyOptionSpec.fromClasses((RunGC,)))
    option_map = option_spec.parse()

    rungc = RunGC(option_map)
    rungc.initialize()

    num_batch = 10000000
    rungc.wrapper.start()

    for i in range(num_batch):
        rungc.wrapper.run()

    rungc.wrapper.stop()
Beispiel #2
0
def load_env(
    envs,
    num_models=None,
    overrides=None,
    additional_to_load=None):
  """Load envs.

  Envs will be specified as environment variables. Specifically, the
  environment variables ``game``, ``model_file`` and ``model`` are
  required.

  ``additional_to_load`` is a dict with the following format:

    {'variable_name': (option_spec, callable)}

  For each element in ``additional_to_load``, ``load_env`` will parse
  the ``option_spec``, pass the resulting option map to ``callable``,
  and store the result of ``callable`` in the return value
  (under the key ``name``).

  Returns:
    env: dict of
      ``game`` : game module
      ``method``: Learning method used
      ``model_loaders``: loaders for model
  """
  logger = logging.getIndexedLogger('\u001b[31;1m|py|\u001b[0mrlpytorch.model_loader.load_env', '')
  logger.info('Loading env')


  game_loader_class = load_module(envs["game"]).Loader
  logger.info(f'\u001b[32;1mModule game successfully loaded :\u001b[0m {envs["game"]}')

  model_file = load_module(envs["model_file"])
  logger.info(f'\u001b[32;1mModule model_file successfully loaded :\u001b[0m {envs["model_file"]}')

  # TODO This is not good, need to fix.
  if len(model_file.Models[envs["model"]]) == 2:
    model_class, method_class = model_file.Models[envs["model"]]
    sampler_class = Sampler
  else:
    model_class, method_class, sampler_class = \
      model_file.Models[envs["model"]]

  overrides = dict(overrides) if overrides else {}
  overrides.update(getattr(model_file, "Overrides", {}))

  option_spec = PyOptionSpec()
  option_spec.merge(PyOptionSpec.fromClasses((
    logging.GlobalLoggingConfigurator,
    game_loader_class,
    method_class,
    sampler_class,
    ModelInterface,
  )))

  if num_models is None:
    option_spec.merge(ModelLoader.get_option_spec(model_class))
  else:
    for i in range(num_models):
      option_spec.merge(
        ModelLoader.get_option_spec(model_class, model_idx=i))
  if additional_to_load:
    for additional_option_spec, _ in additional_to_load.values():
      option_spec.merge(additional_option_spec)

  option_map = option_spec.parse(overrides=overrides)

  global_logger_configurator = logging.GlobalLoggingConfigurator(option_map)
  global_logger_configurator.configure()

  game = game_loader_class(option_map)
  method = method_class(option_map)
  sampler = sampler_class(option_map)
  mi = ModelInterface(option_map)

  # You might want multiple models loaded.
  if num_models is None:
    model_loaders = [ModelLoader(option_map, model_class)]
  else:
    model_loaders = [ModelLoader(option_map, model_class, model_idx=i)
             for i in range(num_models)]

  env = dict(
    game=game,
    method=method,
    sampler=sampler,
    model_loaders=model_loaders,
    mi=mi,
  )
  if additional_to_load:
    for name, (_, option_map_callable) in additional_to_load.items():
      env[name] = option_map_callable(option_map)


  pretty_option_str = pprint.pformat(option_map.getOptionDict(), width=50)
  logger.info(f'Parsed options:\n{pretty_option_str}')
  logger.info('Finished loading env')

  # env_str = ""
  # for i in env:
  #     env_str += f"{i} : {env[i]}\n"
  # logger.info(f"env :\n{env_str}")
  return env
Beispiel #3
0
        #print("Receive batch: ", batch.smem.info(),
        #      ", curr_batchsize: ", str(batch.batchsize), sep='')
        #print(batch["s"])
        # print("Actor: " + str(datetime.timestamp(datetime.now())))
        #print("on actor")
        # n = self.params["num_action"]
        # print(batch.batchsize)
        res = self.model(batch)
        res["V"].data /= 10.0
        #print("s: %f, V: %f, pi: %s" % (batch["s"].data.item(), res["V"].data.item(), str(res["pi"].data)))
        return dict(V=res["V"].data, pi=res["pi"].data)

if __name__ == '__main__':
    option_spec = PyOptionSpec()
    option_spec.merge(PyOptionSpec.fromClasses((RunGC,)))
    option_map = option_spec.parse()

    rungc = RunGC(option_map)
    rungc.initialize()

    num_batch = 10000000
    start = time.perf_counter()

    rungc.wrapper.start()

    for i in range(num_batch):
        rungc.wrapper.run()

    elapsed = time.perf_counter() - start
    print("Time (s) per batch: %.6f sec" % (elapsed / num_batch))