Beispiel #1
0
    def update(self, batch, batch_index):
        """Update the GP regression model of the target node with a new batch.

        Parameters
        ----------
        batch : dict
            dict with `self.outputs` as keys and the corresponding outputs for the batch
            as values
        batch_index : int
            Index of batch.

        """
        # Update the inference state
        self.state['n_batches'] += 1
        self.state['n_sim'] += self.batch_size * self.n_training_data

        # Predict log-ratio
        likelihood = self._generate_likelihood(
            self._get_parameter_values(batch))
        X, y = self._generate_training_data(likelihood, self.marginal)
        negative_log_ratio_value = -1 * self.predict_log_ratio(
            X, y, self.observed)

        # Update classifier attributes list
        self.classifier_attributes += [self.classifier.attributes]

        # BO part
        self.state['n_evidence'] += self.batch_size
        parameter_values = batch_to_arr2d(batch, self.parameter_names)
        optimize = self._should_optimize()
        self.target_model.update(parameter_values, negative_log_ratio_value,
                                 optimize)
        if optimize:
            self.state['last_GP_update'] = self.target_model.n_evidence
Beispiel #2
0
    def update(self, batch, batch_index):
        """Update the GP regression model of the target node.
        """
        super(BayesianOptimization, self).update(batch, batch_index)
        self.state['n_evidence'] += self.batch_size

        params = batch_to_arr2d(batch, self.parameter_names)
        self._report_batch(batch_index, params, batch[self.target_name])

        optimize = self._should_optimize()
        self.target_model.update(params, batch[self.target_name], optimize)
        if optimize:
            self.state['last_GP_update'] = self.target_model.n_evidence
    def update(self, batch, batch_index):
        """Update the GP regression model of the target node with a new batch.

        Parameters
        ----------
        batch : dict
            dict with `self.outputs` as keys and the corresponding outputs for the batch
            as values
        batch_index : int

        """
        super(BayesianOptimization, self).update(batch, batch_index)
        self.state['n_evidence'] += self.batch_size

        params = batch_to_arr2d(batch, self.parameter_names)
        self._report_batch(batch_index, params, batch[self.target_name])

        optimize = self._should_optimize()
        self.target_model.update(params, batch[self.target_name], optimize)
        if optimize:
            self.state['last_GP_update'] = self.target_model.n_evidence
class BayesianOptimization(ParameterInference):
    """Bayesian Optimization of an unknown target function."""

    def __init__(self,
                 model,
                 target_name=None,
                 bounds=None,
                 initial_evidence=None,
                 update_interval=10,
                 target_model=None,
                 acquisition_method=None,
                 acq_noise_var=0,
                 exploration_rate=10,
                 batch_size=1,
                 batches_per_acquisition=None,
                 async=False,
                 **kwargs):
        """Initialize Bayesian optimization.

        Parameters
        ----------
        model : ElfiModel or NodeReference
        target_name : str or NodeReference
            Only needed if model is an ElfiModel
        bounds : dict, optional
            The region where to estimate the posterior for each parameter in
            model.parameters: dict('parameter_name':(lower, upper), ... )`. Not used if
            custom target_model is given.
        initial_evidence : int, dict, optional
            Number of initial evidence or a precomputed batch dict containing parameter
            and discrepancy values. Default value depends on the dimensionality.
        update_interval : int, optional
            How often to update the GP hyperparameters of the target_model
        target_model : GPyRegression, optional
        acquisition_method : Acquisition, optional
            Method of acquiring evidence points. Defaults to LCBSC.
        acq_noise_var : float or np.array, optional
            Variance(s) of the noise added in the default LCBSC acquisition method.
            If an array, should be 1d specifying the variance for each dimension.
        exploration_rate : float, optional
            Exploration rate of the acquisition method
        batch_size : int, optional
            Elfi batch size. Defaults to 1.
        batches_per_acquisition : int, optional
            How many batches will be requested from the acquisition function at one go.
            Defaults to max_parallel_batches.
        async : bool, optional
            Allow acquisitions to be made asynchronously, i.e. do not wait for all the
            results from the previous acquisition before making the next. This can be more
            efficient with a large amount of workers (e.g. in cluster environments) but
            forgoes the guarantee for the exactly same result with the same initial
            conditions (e.g. the seed). Default False.
        **kwargs

        """
        model, target_name = self._resolve_model(model, target_name)
        output_names = [target_name] + model.parameter_names
        super(BayesianOptimization, self).__init__(
            model, output_names, batch_size=batch_size, **kwargs)

        target_model = target_model or GPyRegression(self.model.parameter_names, bounds=bounds)

        self.target_name = target_name
        self.target_model = target_model

        n_precomputed = 0
        n_initial, precomputed = self._resolve_initial_evidence(initial_evidence)
        if precomputed is not None:
            params = batch_to_arr2d(precomputed, self.parameter_names)
            n_precomputed = len(params)
            self.target_model.update(params, precomputed[target_name])

        self.batches_per_acquisition = batches_per_acquisition or self.max_parallel_batches
        self.acquisition_method = acquisition_method or LCBSC(self.target_model,
                                                              prior=ModelPrior(self.model),
                                                              noise_var=acq_noise_var,
                                                              exploration_rate=exploration_rate,
                                                              seed=self.seed)

        self.n_initial_evidence = n_initial
        self.n_precomputed_evidence = n_precomputed
        self.update_interval = update_interval
        self.async = async