from emcat import KK from default_parameters import default_parameters script_params = default_parameters.copy() #script_params.update( # run_monitoring_server=False, # debug=True, # ) picklefile = '/home/skadir/globalphy/nicktest/nick_global_80001_supercluster.p' pkl_file = open(picklefile,'rb') [time_taken_parallel, full_adjacency, channel_order_dict,globalcl_dict,supercluster_info,supercluster_results, superclusters] = pickle.load(pkl_file) pkl_file.close() #superdata used to be called silly superdata = sorting.sparsify_superclusters(superclusters) outsil = superdata.to_sparse_data() #don't need to write the outsil variable, everything is stored within the sparse class distdata = superdata.supercluster_distribution() start_time = time.time() [clust50, dic50] = superdata.clump_fine_clustering(50) time_taken_clump = time.time()-start_time print('Time taken for clump clustering %.2f s' %(time_taken_clump)) embed() kk = KK(superdata,**script_params) kk.cluster_from(clust50) #Automatically create clust100 via #kk.cluster_hammingmask_starts(100) embed()
mixture = pickle.load(pkl_file) pkl_file.close() #Get initial clustering for testing initpicklefile = personal_homedir + 'global_superclustering/global_code/init_synthetic_cat_4.p' initpkl_file = open(initpicklefile,'rb') initclust = pickle.load(initpkl_file) initpkl_file.close() #embed() mixture_dict = mixture[0] #num_starting_clusters = 15 #num_spikes = mixture_dict['superclusters'].shape[0] #initclust = tc.generate_random_initial_clustering(num_starting_clusters, num_spikes ) #superdata used to be called silly superdata = sorting.sparsify_superclusters(mixture_dict['superclusters']) outsparse = superdata.to_sparse_data() #don't need to write the outsil variable, everything is stored within the sparse class distdata = superdata.supercluster_distribution() start_time = time.time() [clust10, dic10] = superdata.clump_fine_clustering(10) time_taken_clump = time.time()-start_time print('Time taken for clump clustering %.2f s' %(time_taken_clump)) kk = KK(outsparse,**script_params) #kk.cluster_from(clust10) kk.cluster_from(initclust) #Automatically create clust100 via #kk.cluster_hammingmask_starts(100) embed()
# run_monitoring_server=False, # debug=True, # ) picklefile = '/home/skadir/globalphy/global_superclustering/global_code/synthetic_cat.p' pkl_file = open(picklefile, 'rb') mixture = pickle.load(pkl_file) pkl_file.close() #embed() mixture_dict = mixture[0] num_starting_clusters = 15 num_spikes = mixture_dict['superclusters'].shape[0] initclust = tc.generate_random_initial_clustering(num_starting_clusters, num_spikes) #superdata used to be called silly superdata = sorting.sparsify_superclusters(mixture_dict['superclusters']) outsparse = superdata.to_sparse_data( ) #don't need to write the outsil variable, everything is stored within the sparse class distdata = superdata.supercluster_distribution() start_time = time.time() [clust10, dic10] = superdata.clump_fine_clustering(10) time_taken_clump = time.time() - start_time print('Time taken for clump clustering %.2f s' % (time_taken_clump)) kk = KK(outsparse, **script_params) #kk.cluster_from(clust10) kk.cluster_from(initclust) #Automatically create clust100 via #kk.cluster_hammingmask_starts(100) embed()