Beispiel #1
0
def agent_factory(name, role, baseline_agent, clients, max_epochs, logdir,
                  visualizer):

    assert len(clients) >= 2, 'Not enough clients (need at least 2)'
    clients = parse_clients_args(clients)

    builder = PigChaseSymbolicStateBuilder()
    env = PigChaseEnvironment(clients,
                              builder,
                              role=role,
                              randomize_positions=True)

    if role == 0:
        agent = PigChaseChallengeAgent(name)

        if type(agent.current_agent) == RandomAgent:
            agent_type = PigChaseEnvironment.AGENT_TYPE_1
        else:
            agent_type = PigChaseEnvironment.AGENT_TYPE_2
        obs = env.reset(agent_type)

        reward = 0
        agent_done = False

        while True:

            # select an action
            action = agent.act(obs, reward, agent_done, is_training=True)

            # reset if needed
            if env.done:
                if type(agent.current_agent) == RandomAgent:
                    agent_type = PigChaseEnvironment.AGENT_TYPE_1
                else:
                    agent_type = PigChaseEnvironment.AGENT_TYPE_2
                obs = env.reset(agent_type)

            # take a step
            obs, reward, agent_done = env.do(action)

    else:

        if baseline_agent == 'astar':
            agent = FocusedAgent(name, ENV_TARGET_NAMES[0])
        else:
            agent = RandomAgent(name, env.available_actions)

        obs = env.reset()
        reward = 0
        agent_done = False
        viz_rewards = []

        max_training_steps = EPOCH_SIZE * max_epochs
        for step in six.moves.range(1, max_training_steps + 1):

            # check if env needs reset
            if env.done:

                visualize_training(visualizer, step, viz_rewards)
                viz_rewards = []
                obs = env.reset()

            # select an action
            action = agent.act(obs, reward, agent_done, is_training=True)
            # take a step
            obs, reward, agent_done = env.do(action)
            viz_rewards.append(reward)

            agent.inject_summaries(step)
def agent_factory(name,
                  role,
                  clients,
                  max_epochs,
                  logdir,
                  visualizer,
                  manual=False):
    assert len(clients) >= 2, 'Not enough clients (need at least 2)'
    clients = parse_clients_args(clients)

    builder = PigChaseSymbolicStateBuilder()
    env = PigChaseEnvironment(clients,
                              builder,
                              actions=DanishPuppet.ACTIONS.all_commands(),
                              role=role,
                              human_speed=HUMAN_SPEED,
                              randomize_positions=True)

    # Default agent (challenger)
    c_agent = ChallengerFactory(name,
                                focused=True,
                                random=True,
                                bad_guy=False,
                                standstill=False)

    # Challenger  (Agent_1)
    if role == 0:

        agent_type = get_agent_type(c_agent.current_agent)
        state = env.reset(agent_type)
        print("Agent Factory: Assigning {}.".format(
            type(c_agent.current_agent).__name__))

        reward = 0
        agent_done = False

        while True:

            # select an action
            action = c_agent.act(state, reward, agent_done, is_training=True)

            # reset if needed
            if env.done:
                agent_type = get_agent_type(c_agent.current_agent)
                _ = env.reset(agent_type)
                print("Agent Factory: Assigning {}.".format(
                    type(c_agent.current_agent).__name__))

            # take a step
            state, reward, agent_done = env.do(action)

    # Our Agent (Agent_2)
    else:
        c_agent = Jumper(name=name, helmets=c_agent.get_helmets())

        # Manual overwrite!
        if manual:
            c_agent.manual = True

        state = env.reset()
        reward = 0
        agent_done = False
        viz_rewards = []

        max_training_steps = EPOCH_SIZE * max_epochs
        for step in range(1, max_training_steps + 1):

            # check if env needs reset

            if env.done:
                try:
                    c_agent.note_game_end(reward_sequence=viz_rewards,
                                          state=state[0])
                except TypeError:
                    c_agent.note_game_end(reward_sequence=viz_rewards,
                                          state=None)
                print("")
                visualize_training(visualizer, step, viz_rewards)
                viz_rewards = []
                state = env.reset()

            # select an action
            action = None
            frame = None if not PASS_FRAME else env.frame
            while action is None:
                # for key, item in env.world_observations.items():
                #     print(key, ":", item)

                total_time = None
                if env is not None and env.world_observations is not None:
                    total_time = env.world_observations["TotalTime"]

                action = c_agent.act(state,
                                     reward,
                                     done=agent_done,
                                     total_time=total_time,
                                     is_training=True,
                                     frame=frame)

                # 'wait'
                if action == DanishPuppet.ACTIONS.wait:
                    action = None
                    sleep(4e-3)
                    state = env.state

            # take a step
            state, reward, agent_done = env.do(action)
            viz_rewards.append(reward)

            c_agent.inject_summaries(step)
def agent_factory(name, role, baseline_agent, clients, max_epochs, logdir,
                  visualizer):

    assert len(clients) >= 2, 'Not enough clients (need at least 2)'
    clients = parse_clients_args(clients)
    batch_size = 32

    builder = PigChaseSymbolicStateBuilder()
    env = PigChaseEnvironment(clients,
                              builder,
                              role=role,
                              randomize_positions=True)

    if role == 0:
        agent = PigChaseChallengeAgent(name)

        if type(agent.current_agent) == RandomAgent:
            agent_type = PigChaseEnvironment.AGENT_TYPE_1
        else:
            agent_type = PigChaseEnvironment.AGENT_TYPE_2
        ##Aqui el state hay que modificarlo para que se adapte a lo que la red neurnal necesita
        state = env.reset(agent_type)

        reward = 0
        agent_done = False
        num_actions = 0
        while True:

            # take a step

            # reset if needed
            if env.done:
                print(agent.check_memory(batch_size))
                if type(agent.current_agent) == RandomAgent:
                    agent_type = PigChaseEnvironment.AGENT_TYPE_1
                else:
                    agent_type = PigChaseEnvironment.AGENT_TYPE_2
                ##Aqui el state habria que modificarlo de nuevo

                if num_actions > batch_size:
                    print('Entrando a replay 1')
                    agent.replay(batch_size)
                state = env.reset(agent_type)

            # select an action
            #print('Accion del role 1')
            action = agent.act(state, reward, agent_done, is_training=True)
            next_state, reward, agent_done = env.do(action)
            num_actions = num_actions + 1
            next_state2 = adapt_state(next_state)
            agent.remember(state, action, reward, next_state2, agent_done)
            ##Aqui state= obs (que seria el estado anterior estado modificado)
            state = next_state
        ##No estoy seguro de si esto va aqui por el while true (no se cuando acaba). Deberia ir cuando acaba una partida
        ##Hacer check si hace el replay o no. Si no lo hace nunca, meter el replay dentro de el if(env.done (signifca que una etapa ha acabado y empieza otra, por lo que deberia esta bien))

    else:

        if baseline_agent == 'astar':
            agent = FocusedAgent(name, ENV_TARGET_NAMES[0])
        else:
            agent = RandomAgent(name, env.available_actions)

        state = env.reset()
        reward = 0
        agent_done = False
        viz_rewards = []

        max_training_steps = EPOCH_SIZE * max_epochs
        for step in six.moves.range(1, max_training_steps + 1):

            # check if env needs reset
            if env.done:

                visualize_training(visualizer, step, viz_rewards)
                viz_rewards = []
                ##No se si esto se tiene que hacer tambien aqui o no, hacer check
                if agent.check_memory(batch_size) > batch_size:
                    print('Entrando a replay 2')
                    agent.replay(batch_size)
                state = env.reset()

            # select an action
            #print('Accion del role 2')
            action = agent.act(state, reward, agent_done, is_training=True)
            # take a step
            next_state, reward, agent_done = env.do(action)
            next_state2 = adapt_state(next_state)
            agent.remember(state, action, reward, next_state2, agent_done)
            ##Aqui state= obs (que seria el estado anterior estado modificado)
            state = next_state
            #obs, reward, agent_done = env.do(action)
            viz_rewards.append(reward)

            agent.inject_summaries(step)
def agent_factory(name, role, clients, backend, device, max_epochs, logdir,
                  visualizer):

    assert len(clients) >= 2, 'Not enough clients (need at least 2)'
    clients = parse_clients_args(clients)

    if role == 0:

        builder = PigChaseSymbolicStateBuilder()
        env = PigChaseEnvironment(clients,
                                  builder,
                                  role=role,
                                  randomize_positions=True)
        agent = PigChaseChallengeAgent(name)
        if type(agent.current_agent) == RandomAgent:
            agent_type = PigChaseEnvironment.AGENT_TYPE_1
        else:
            agent_type = PigChaseEnvironment.AGENT_TYPE_2

        obs = env.reset(agent_type)
        reward = 0
        agent_done = False

        while True:
            if env.done:
                if type(agent.current_agent) == RandomAgent:
                    agent_type = PigChaseEnvironment.AGENT_TYPE_1
                else:
                    agent_type = PigChaseEnvironment.AGENT_TYPE_2

                obs = env.reset(agent_type)
                while obs is None:
                    # this can happen if the episode ended with the first
                    # action of the other agent
                    print('Warning: received obs == None.')
                    obs = env.reset(agent_type)

            # select an action

#Aqui seleccionamos la acción a tomar por el agente 0
            action = agent.act(obs, reward, agent_done, is_training=True)
            # take a step
            #aquí estamos en el bucle de realizar la acción
            obs, reward, agent_done = env.do(action)

    else:
        env = PigChaseEnvironment(clients,
                                  MalmoALEStateBuilder(),
                                  role=role,
                                  randomize_positions=True)
        memory = TemporalMemory(100000, (84, 84))

        if backend == 'cntk':
            from malmopy.model.cntk import QNeuralNetwork
            model = QNeuralNetwork((memory.history_length, 84, 84),
                                   env.available_actions, device)
        else:
            from malmopy.model.chainer import QNeuralNetwork, DQNChain
            chain = DQNChain((memory.history_length, 84, 84),
                             env.available_actions)
            target_chain = DQNChain((memory.history_length, 84, 84),
                                    env.available_actions)
            model = QNeuralNetwork(chain, target_chain, device)

        explorer = LinearEpsilonGreedyExplorer(1, 0.1, 1000000)
        agent = PigChaseQLearnerAgent(name,
                                      env.available_actions,
                                      model,
                                      memory,
                                      0.99,
                                      32,
                                      50000,
                                      explorer=explorer,
                                      visualizer=visualizer)

        obs = env.reset()
        reward = 0
        agent_done = False
        viz_rewards = []

        max_training_steps = EPOCH_SIZE * max_epochs
        for step in six.moves.range(1, max_training_steps + 1):

            # check if env needs reset
            if env.done:

                visualize_training(visualizer, step, viz_rewards)
                agent.inject_summaries(step)
                viz_rewards = []

                obs = env.reset()
                while obs is None:
                    # this can happen if the episode ended with the first
                    # action of the other agent
                    print('Warning: received obs == None.')
                    obs = env.reset()

            # select an action
            action = agent.act(obs, reward, agent_done, is_training=True)
            # take a step
            obs, reward, agent_done = env.do(action)
            viz_rewards.append(reward)

            if (step % EPOCH_SIZE) == 0:
                if 'model' in locals():
                    model.save('pig_chase-dqn_%d.model' % (step / EPOCH_SIZE))
Beispiel #5
0
def agent_factory(name, role, type, clients, max_epochs, logdir, visualizer):

    assert len(clients) >= 2, 'Not enough clients (need at least 2)'
    clients = parse_clients_args(clients)

    builder = PigChaseSymbolicStateBuilder()
    env = PigChaseEnvironment(clients,
                              builder,
                              role=role,
                              randomize_positions=True)

    if role == 0:
        agent = FocusedAgent(name, ENV_TARGET_NAMES[0])
        ################### should add other two agent
        obs = env.reset()
        reward = 0
        agent_done = False
        max_training_steps = EPOCH_SIZE * max_epochs
        epoch = 0
        for step in range(1, max_training_steps + 1):
            if env.done:
                obs = env.reset()
                epoch += 1
            # select an action
            action = agent.act(obs, reward, agent_done)
            # take a step
            obs, reward, agent_done = env.do(action)

    else:
        config = tf.ConfigProto(allow_soft_placement=True)
        config.gpu_options.allow_growth = True
        with tf.Session(config=config) as sess:
            agent = BayesAgent(name, ENV_TARGET_NAMES[0], 'Agent_1', True,
                               sess)
            if not agent.save:
                sess.run(tf.global_variables_initializer())
                print "Initialize"
            obs = env.reset()
            agent.reset(obs)
            reward = 0
            agent_done = False
            viz_rewards = []
            avg = []
            epoch = 0
            s = 1
            max_training_steps = EPOCH_SIZE * max_epochs
            for step in range(1, max_training_steps + 1):
                # check if env needs reset
                if agent_done:
                    obs = env.reset()
                    agent.reset(obs)
                    avg.append(sum(viz_rewards))
                    print "Epoch:%d, accumulative rewards: %d" % (
                        epoch, sum(viz_rewards))
                    visualize_training(visualizer, step, viz_rewards)
                    viz_rewards = []
                    epoch += 1
                    if epoch % 10 == 0:
                        agent.reset_collaborator()
                    s = 1

                # select an action
                action = agent.act(obs, reward, agent_done, is_training=True)
                # take a step
                next_obs, reward, agent_done = env.do(action)
                agent.training(obs, action, reward, next_obs, agent_done, s,
                               step)
                s += 1
                obs = next_obs
                viz_rewards.append(reward)

                if step % 100 == 0:
                    agent.save_replay_buffer()
                #
                agent.inject_summaries(step)

            print "Average Reward: ", 1. * sum(avg) / len(avg)
Beispiel #6
0
def agent_factory(name, role, baseline_agent, clients, max_epochs, logdir,
                  visualizer):

    assert len(clients) >= 2, 'Not enough clients (need at least 2)'
    clients = parse_clients_args(clients)

    builder = PigChaseSymbolicStateBuilder()
    env = PigChaseEnvironment(clients,
                              builder,
                              role=role,
                              randomize_positions=True)

    if role == 0:
        agent = PigChaseChallengeAgent(name)
        obs = env.reset(get_agent_type(agent))

        reward = 0
        agent_done = False

        while True:
            if env.done:
                while True:
                    obs = env.reset(get_agent_type(agent))
                    if obs:
                        break

            # select an action
            action = agent.act(obs, reward, agent_done, is_training=True)

            # reset if needed
            if env.done:
                obs = env.reset(get_agent_type(agent))

            # take a step
            obs, reward, agent_done = env.do(action)

    else:

        if baseline_agent == 'tabq':
            agent = TabularQLearnerAgent(name, visualizer)
        elif baseline_agent == 'astar':
            agent = FocusedAgent(name, ENV_TARGET_NAMES[0])
        else:
            agent = RandomAgent(name, env.available_actions)

        obs = env.reset()
        reward = 0
        agent_done = False
        viz_rewards = []

        max_training_steps = EPOCH_SIZE * max_epochs
        for step in six.moves.range(1, max_training_steps + 1):

            # check if env needs reset
            if env.done:
                while True:
                    if len(viz_rewards) == 0:
                        viz_rewards.append(0)
                    visualize_training(visualizer, step, viz_rewards)
                    tag = "Episode End Conditions"
                    visualizer.add_entry(
                        step, '%s/timeouts per episode' % tag,
                        env.end_result == "command_quota_reached")
                    visualizer.add_entry(
                        step, '%s/agent_1 defaults per episode' % tag,
                        env.end_result == "Agent_1_defaulted")
                    visualizer.add_entry(
                        step, '%s/agent_2 defaults per episode' % tag,
                        env.end_result == "Agent_2_defaulted")
                    visualizer.add_entry(step,
                                         '%s/pig caught per episode' % tag,
                                         env.end_result == "caught_the_pig")
                    agent.inject_summaries(step)
                    viz_rewards = []
                    obs = env.reset()
                    if obs:
                        break

            # select an action
            action = agent.act(obs, reward, agent_done, is_training=True)
            # take a step
            obs, reward, agent_done = env.do(action)
            viz_rewards.append(reward)