def __process_carla_scene(self, data):
        # Get extent and sizing from trajectory data.
        traj_data = data.trajectory_data
        comp_key = np.logical_and(traj_data['node_id'] == 'ego',
                                  traj_data['frame_id'] == 0)
        s = traj_data[comp_key].iloc[0]
        ego_initx, ego_inity = s['x'], s['y']
        max_timesteps = traj_data['frame_id'].max()
        x_min = round_to_int(traj_data['x'].min() - 50)
        x_max = round_to_int(traj_data['x'].max() + 50)
        y_min = round_to_int(traj_data['y'].min() - 50)
        y_max = round_to_int(traj_data['y'].max() + 50)
        x_size = x_max - x_min
        y_size = y_max - y_min

        # Filter road from LIDAR points.
        points = data.overhead_points
        z_mask = np.logical_and(points[:, 2] > self.Z_LOWERBOUND,
                                points[:, 2] < self.Z_UPPERBOUND)
        points = data.overhead_points[z_mask]
        labels = data.overhead_labels[z_mask]
        road_label_mask = np.logical_or(
            labels == SegmentationLabel.Road.value,
            labels == SegmentationLabel.Vehicle.value)
        road_points = points[road_label_mask]

        # Adjust and filter occlusions from trajectory data.
        bitmap = points_to_2d_histogram(road_points, x_min, x_max, y_min,
                                        y_max, data.scene_config.pixels_per_m)
        bitmap[bitmap > 0] = 1
        traj_data['x'] = traj_data['x'] - x_min
        traj_data['y'] = traj_data['y'] - y_min
        transform = scipy.ndimage.distance_transform_cdt(-bitmap + 1)
        X = traj_data[['x', 'y']].values
        Xind = (data.scene_config.pixels_per_m * X).astype(int)
        vals = transform[Xind.T[0], Xind.T[1]]
        comp_key = np.logical_or(traj_data['node_id'] == 'ego',
                                 vals < self.DISTANCE_FROM_ROAD)
        traj_data = traj_data[comp_key]

        # Create bitmap from map data.
        pixels_per_m = data.scene_config.pixels_per_m
        road_polygons = data.map_data.road_polygons
        yellow_lines = data.map_data.yellow_lines
        white_lines = data.map_data.white_lines
        dim = (int(pixels_per_m * y_size), int(pixels_per_m * x_size), 3)
        bitmap = np.zeros(dim)
        """NuScenes bitmap format
        scene.map[...].as_image() has shape (y, x, c)
        Channel 1: lane, road_segment, drivable_area
        Channel 2: road_divider
        Channel 3: lane_divider"""

        for polygon in road_polygons:
            rzpoly = ( pixels_per_m*(polygon[:,:2] - np.array([x_min, y_min])) ) \
                    .astype(int).reshape((-1,1,2))
            cv.fillPoly(bitmap, [rzpoly], (255, 0, 0))

        for line in yellow_lines:
            rzline = ( pixels_per_m*(line[:,:2] - np.array([x_min, y_min])) ) \
                    .astype(int).reshape((-1,1,2))
            cv.polylines(bitmap, [rzline], False, (0, 255, 0), thickness=2)

        for line in white_lines:
            rzline = ( pixels_per_m*(line[:,:2] - np.array([x_min, y_min])) ) \
                    .astype(int).reshape((-1,1,2))
            cv.polylines(bitmap, [rzline], False, (0, 0, 255), thickness=2)
        bitmap = bitmap.astype(np.uint8).transpose((2, 1, 0))

        # Create scene
        dt = data.fixed_delta_seconds * data.scene_config.record_interval
        scene = Scene(timesteps=max_timesteps + 1,
                      dt=dt,
                      name=data.scene_name,
                      aug_func=augment)
        scene.ego_initx = ego_initx
        scene.ego_inity = ego_inity
        scene.x_min = x_min
        scene.y_min = y_min
        scene.x_max = x_max
        scene.y_max = y_max
        scene.map_name = data.map_name
        scene.x_size = x_size
        scene.y_size = y_size

        patch_box = (x_min + 0.5 * (x_max - x_min),
                     y_min + 0.5 * (y_max - y_min), y_size, x_size)
        patch_angle = 0
        canvas_size = (np.round(3 * y_size).astype(int),
                       np.round(3 * x_size).astype(int))
        homography = np.array([[3., 0., 0.], [0., 3., 0.], [0., 0., 3.]])
        layer_names = ['drivable_area']

        scene.patch_box = patch_box
        scene.patch_angle = patch_angle
        scene.canvas_size = canvas_size
        scene.homography = homography
        scene.layer_names = layer_names

        type_map = dict()
        type_map['VEHICLE'] = GeometricMap(data=bitmap,
                                           homography=homography,
                                           description=', '.join(layer_names))
        type_map['VISUALIZATION'] = GeometricMap(
            data=bitmap,
            homography=homography,
            description=', '.join(layer_names))
        scene.map = type_map
        scene_config = data.scene_config
        return scene, traj_data, max_timesteps, scene_config
    def process_scene(self, data):
        # Remove trajectory points of hidden vehicles.
        # This method introduces occlusion to trajectories
        comp_keys = pd.DataFrame.from_dict(data.vehicle_visibility,
                                           orient='index')
        comp_keys = comp_keys.stack().to_frame().reset_index().drop('level_1',
                                                                    axis=1)
        comp_keys.columns = ['frame_id', 'node_id']
        data.trajectory_data = pd.merge(data.trajectory_data,
                                        comp_keys,
                                        how='inner',
                                        on=['frame_id', 'node_id'])

        # Trim points above/below certain Z levels.
        points = data.overhead_points
        z_mask = np.logical_and(points[:, 2] > self.Z_LOWERBOUND,
                                points[:, 2] < self.Z_UPPERBOUND)
        points = data.overhead_points[z_mask]
        labels = data.overhead_labels[z_mask]
        # Select road LIDAR points.
        road_label_mask = labels == SegmentationLabel.Road.value
        road_points = points[road_label_mask]

        # Remove trajectory points that are far from road LIDAR points.
        # This method is just too computationally expensive
        # X = traj_data[['x', 'y']].values
        # D = scipy.spatial.distance_matrix(X, road_points[:, :2])
        # traj_mask = np.min(D, axis=1) < self.DISTANCE_FROM_ROAD
        # traj_data = traj_data[np.logical_or(traj_mask, traj_data['node_id'] == 'ego')]

        # Get extent and other data
        traj_data = data.trajectory_data
        comp_key = np.logical_and(traj_data['node_id'] == 'ego',
                                  traj_data['frame_id'] == 0)
        s = traj_data[comp_key].iloc[0]
        ego_initx, ego_inity = s['x'], s['y']
        max_timesteps = traj_data['frame_id'].max()
        x_min = round_to_int(traj_data['x'].min() - 50)
        x_max = round_to_int(traj_data['x'].max() + 50)
        y_min = round_to_int(traj_data['y'].min() - 50)
        y_max = round_to_int(traj_data['y'].max() + 50)
        # Form bitmap
        bitmap = points_to_2d_histogram(road_points, x_min, x_max, y_min,
                                        y_max, data.scene_config.pixels_per_m)
        bitmap[bitmap > 0.] = 255.
        bitmap = np.stack(
            (bitmap, np.zeros(bitmap.shape), np.zeros(bitmap.shape)), axis=0)
        bitmap = bitmap.astype(np.uint8)
        # adjust trajectory data
        traj_data['x'] = traj_data['x'] - x_min
        traj_data['y'] = traj_data['y'] - y_min
        # Create scene
        dt = data.fixed_delta_seconds * data.scene_config.record_interval
        scene = Scene(timesteps=max_timesteps + 1,
                      dt=dt,
                      name=data.scene_name,
                      aug_func=augment)
        scene.ego_initx = ego_initx
        scene.ego_inity = ego_inity
        scene.x_min = x_min
        scene.y_min = y_min
        scene.x_max = x_max
        scene.y_max = y_max

        type_map = dict()
        x_size = x_max - x_min
        y_size = y_max - y_min

        scene.map_name = data.map_name
        scene.x_size = x_size
        scene.y_size = y_size

        patch_box = (x_min + 0.5 * (x_max - x_min),
                     y_min + 0.5 * (y_max - y_min), y_size, x_size)
        patch_angle = 0
        canvas_size = (np.round(3 * y_size).astype(int),
                       np.round(3 * x_size).astype(int))
        homography = np.array([[3., 0., 0.], [0., 3., 0.], [0., 0., 3.]])
        layer_names = ['drivable_area']

        scene.patch_box = patch_box
        scene.patch_angle = patch_angle
        scene.canvas_size = canvas_size
        scene.homography = homography
        scene.layer_names = layer_names

        type_map['VEHICLE'] = GeometricMap(data=bitmap,
                                           homography=homography,
                                           description=', '.join(layer_names))
        type_map['VISUALIZATION'] = GeometricMap(
            data=bitmap,
            homography=homography,
            description=', '.join(layer_names))
        scene.map = type_map
        scene_config = data.scene_config
        del bitmap
        del points
        del labels
        del road_points
        del data
        return process_trajectron_scene(scene, traj_data, max_timesteps,
                                        scene_config)
Beispiel #3
0
def process_scene(sample_token, processed_sample_tokens, env, nusc, helper,
                  data_path, data_class, half_dt, dynamic):
    data = pd.DataFrame(columns=[
        'frame_id', 'type', 'node_id', 'robot', 'x', 'y', 'z', 'length',
        'width', 'height', 'heading'
    ])

    samples = aggregate_samples(nusc,
                                start=sample_token,
                                data_class=data_class)

    attribute_dict = defaultdict(set)

    frame_id = 0
    for sample in samples:
        annotation_tokens = sample['anns']
        for annotation_token in annotation_tokens:
            annotation = nusc.get('sample_annotation', annotation_token)
            category = annotation['category_name']
            if len(annotation['attribute_tokens']):
                attribute = nusc.get('attribute',
                                     annotation['attribute_tokens'][0])['name']
            else:
                if 'vehicle' in category:
                    attribute = ''
                else:
                    continue

            if 'pedestrian' in category and 'stroller' not in category and 'wheelchair' not in category:
                our_category = env.NodeType.PEDESTRIAN
            elif 'vehicle' in category and 'bicycle' not in category and 'motorcycle' not in category:  # and 'parked' not in attribute:
                our_category = env.NodeType.VEHICLE
            else:
                continue

            attribute_dict[annotation['instance_token']].add(attribute)

            data_point = pd.Series({
                'frame_id':
                frame_id,
                'type':
                our_category,
                'node_id':
                annotation['instance_token'],
                'robot':
                False,
                'x':
                annotation['translation'][0],
                'y':
                annotation['translation'][1],
                'z':
                annotation['translation'][2],
                'length':
                annotation['size'][0],
                'width':
                annotation['size'][1],
                'height':
                annotation['size'][2],
                'heading':
                Quaternion(annotation['rotation']).yaw_pitch_roll[0]
            })
            data = data.append(data_point, ignore_index=True)

        # Ego Vehicle
        our_category = env.NodeType.VEHICLE
        sample_data = nusc.get('sample_data', sample['data']['CAM_FRONT'])
        annotation = nusc.get('ego_pose', sample_data['ego_pose_token'])
        data_point = pd.Series({
            'frame_id':
            frame_id,
            'type':
            our_category,
            'node_id':
            'ego',
            'robot':
            True,
            'x':
            annotation['translation'][0],
            'y':
            annotation['translation'][1],
            'z':
            annotation['translation'][2],
            'length':
            4,
            'width':
            1.7,
            'height':
            1.5,
            'heading':
            Quaternion(annotation['rotation']).yaw_pitch_roll[0],
            'orientation':
            None
        })
        data = data.append(data_point, ignore_index=True)

        processed_sample_tokens.add(sample['token'])
        frame_id += 1

    if len(data.index) == 0:
        return None

    data.sort_values('frame_id', inplace=True)
    max_timesteps = data['frame_id'].max()

    x_min = np.round(data['x'].min() - 50)
    x_max = np.round(data['x'].max() + 50)
    y_min = np.round(data['y'].min() - 50)
    y_max = np.round(data['y'].max() + 50)

    data['x'] = data['x'] - x_min
    data['y'] = data['y'] - y_min

    scene = Scene(timesteps=max_timesteps + 1,
                  dt=dt,
                  name=sample_token,
                  aug_func=augment,
                  sample_tokens=[sample['token'] for sample in samples],
                  x_min=x_min,
                  y_min=y_min)

    # Generate Maps
    map_name = helper.get_map_name_from_sample_token(sample_token)
    nusc_map = NuScenesMap(dataroot=data_path, map_name=map_name)

    type_map = dict()
    x_size = x_max - x_min
    y_size = y_max - y_min
    patch_box = (x_min + 0.5 * (x_max - x_min), y_min + 0.5 * (y_max - y_min),
                 y_size, x_size)
    patch_angle = 0  # Default orientation where North is up
    canvas_size = (np.round(3 * y_size).astype(int),
                   np.round(3 * x_size).astype(int))
    homography = np.array([[3., 0., 0.], [0., 3., 0.], [0., 0., 3.]])
    layer_names = [
        'lane', 'road_segment', 'drivable_area', 'road_divider',
        'lane_divider', 'stop_line', 'ped_crossing', 'stop_line',
        'ped_crossing', 'walkway'
    ]
    map_mask = (nusc_map.get_map_mask(patch_box, patch_angle, layer_names,
                                      canvas_size) * 255.0).astype(np.uint8)
    map_mask = np.swapaxes(map_mask, 1, 2)  # x axis comes first
    # PEDESTRIANS
    map_mask_pedestrian = np.stack(
        (map_mask[9], map_mask[8], np.max(map_mask[:3], axis=0)), axis=0)
    type_map['PEDESTRIAN'] = GeometricMap(data=map_mask_pedestrian,
                                          homography=homography,
                                          description=', '.join(layer_names))
    # VEHICLES
    map_mask_vehicle = np.stack(
        (np.max(map_mask[:3], axis=0), map_mask[3], map_mask[4]), axis=0)
    type_map['VEHICLE'] = GeometricMap(data=map_mask_vehicle,
                                       homography=homography,
                                       description=', '.join(layer_names))

    map_mask_plot = np.stack(
        ((np.max(map_mask[:3], axis=0) -
          (map_mask[3] + 0.5 * map_mask[4]).clip(max=255)).clip(min=0).astype(
              np.uint8), map_mask[8], map_mask[9]),
        axis=0)
    type_map['VISUALIZATION'] = GeometricMap(
        data=map_mask_plot,
        homography=homography,
        description=', '.join(layer_names))

    scene.map = type_map
    del map_mask
    del map_mask_pedestrian
    del map_mask_vehicle
    del map_mask_plot

    for node_id in pd.unique(data['node_id']):
        node_frequency_multiplier = 1
        node_df = data[data['node_id'] == node_id]

        if dynamic:
            if 'vehicle.parked' in attribute_dict[
                    node_id] or 'vehicle.stopped' in attribute_dict[node_id]:
                continue

        elif len(attribute_dict[node_id]
                 ) == 1 and 'vehicle.parked' in attribute_dict[node_id]:
            # Catching instances of vehicles that were parked and then moving, but not allowing
            # only parked vehicles through.
            continue

        if node_df['x'].shape[0] < 2:
            continue

        if not np.all(np.diff(node_df['frame_id']) == 1):
            min_index = node_df['frame_id'].min()
            max_index = node_df['frame_id'].max()
            node_df = node_df.set_index('frame_id').reindex(
                range(min_index, max_index + 1)).interpolate().reset_index()
            node_df['type'] = node_df['type'].mode()[0]
            node_df['node_id'] = node_id
            node_df['robot'] = False
            # print('Occlusion')
            # continue  # TODO Make better

        node_values = node_df[['x', 'y']].values
        x = node_values[:, 0]
        y = node_values[:, 1]
        heading = node_df['heading'].values
        if node_df.iloc[0][
                'type'] == env.NodeType.VEHICLE and not node_id == 'ego':
            # Kalman filter Agent
            vx = derivative_of(x, scene.dt)
            vy = derivative_of(y, scene.dt)
            velocity = np.linalg.norm(np.stack((vx, vy), axis=-1), axis=-1)

            filter_veh = NonlinearKinematicBicycle(dt=scene.dt,
                                                   sMeasurement=1.0)
            P_matrix = None
            for i in range(len(x)):
                if i == 0:  # initalize KF
                    # initial P_matrix
                    P_matrix = np.identity(4)
                elif i < len(x):
                    # assign new est values
                    x[i] = x_vec_est_new[0][0]
                    y[i] = x_vec_est_new[1][0]
                    heading[i] = x_vec_est_new[2][0]
                    velocity[i] = x_vec_est_new[3][0]

                if i < len(x) - 1:  # no action on last data
                    # filtering
                    x_vec_est = np.array([[x[i]], [y[i]], [heading[i]],
                                          [velocity[i]]])
                    z_new = np.array([[x[i + 1]], [y[i + 1]], [heading[i + 1]],
                                      [velocity[i + 1]]])
                    x_vec_est_new, P_matrix_new = filter_veh.predict_and_update(
                        x_vec_est=x_vec_est,
                        u_vec=np.array([[0.], [0.]]),
                        P_matrix=P_matrix,
                        z_new=z_new)
                    P_matrix = P_matrix_new

            curvature, pl, _ = trajectory_curvature(np.stack((x, y), axis=-1))
            if pl < 1.0:  # vehicle is "not" moving
                x = x[0].repeat(max_timesteps + 1)
                y = y[0].repeat(max_timesteps + 1)
                heading = heading[0].repeat(max_timesteps + 1)
            global total
            global curv_0_2
            global curv_0_1
            total += 1
            if pl > 1.0:
                if curvature > .2:
                    curv_0_2 += 1
                    node_frequency_multiplier = 3 * int(
                        np.floor(total / curv_0_2))
                elif curvature > .1:
                    curv_0_1 += 1
                    node_frequency_multiplier = 3 * int(
                        np.floor(total / curv_0_1))

        if half_dt:
            t_old = np.linspace(0, 1, x.shape[0])
            t_new = np.linspace(0, 1, 2 * x.shape[0])
            x = np.interp(t_new, t_old, x)
            y = np.interp(t_new, t_old, y)
            heading = np.interp(
                t_new, t_old, heading + np.pi, period=2 * np.pi) - np.pi

            vx = derivative_of(x, scene.dt / 2)
            vy = derivative_of(y, scene.dt / 2)
            ax = derivative_of(vx, scene.dt / 2)
            ay = derivative_of(vy, scene.dt / 2)
        else:
            vx = derivative_of(x, scene.dt)
            vy = derivative_of(y, scene.dt)
            ax = derivative_of(vx, scene.dt)
            ay = derivative_of(vy, scene.dt)

        if node_df.iloc[0]['type'] == env.NodeType.VEHICLE:
            v = np.stack((vx, vy), axis=-1)
            v_norm = np.linalg.norm(np.stack((vx, vy), axis=-1),
                                    axis=-1,
                                    keepdims=True)
            heading_v = np.divide(v,
                                  v_norm,
                                  out=np.zeros_like(v),
                                  where=(v_norm > 1.))
            heading_x = heading_v[:, 0]
            heading_y = heading_v[:, 1]

            a_norm = np.divide(ax * vx + ay * vy,
                               v_norm[..., 0],
                               out=np.zeros_like(ax),
                               where=(v_norm[..., 0] > 1.))

            if half_dt:
                d_heading = derivative_of(heading, scene.dt / 2, radian=True)
            else:
                d_heading = derivative_of(heading, scene.dt, radian=True)

            data_dict = {
                ('position', 'x'):
                x,
                ('position', 'y'):
                y,
                ('velocity', 'x'):
                vx,
                ('velocity', 'y'):
                vy,
                ('velocity', 'norm'):
                np.linalg.norm(np.stack((vx, vy), axis=-1), axis=-1),
                ('acceleration', 'x'):
                ax,
                ('acceleration', 'y'):
                ay,
                ('acceleration', 'norm'):
                a_norm,
                ('heading', 'x'):
                heading_x,
                ('heading', 'y'):
                heading_y,
                ('heading', '°'):
                heading,
                ('heading', 'd°'):
                d_heading
            }
            node_data = pd.DataFrame(data_dict, columns=data_columns_vehicle)
        else:
            data_dict = {
                ('position', 'x'): x,
                ('position', 'y'): y,
                ('velocity', 'x'): vx,
                ('velocity', 'y'): vy,
                ('acceleration', 'x'): ax,
                ('acceleration', 'y'): ay
            }
            node_data = pd.DataFrame(data_dict,
                                     columns=data_columns_pedestrian)

        node = Node(node_type=node_df.iloc[0]['type'],
                    node_id=0 if node_id == 'ego' else abs(hash(node_id)),
                    data=node_data,
                    frequency_multiplier=node_frequency_multiplier,
                    description=node_id)

        node.first_timestep = node_df['frame_id'].iloc[0]
        if half_dt:
            node.first_timestep *= 2

        if node_df.iloc[0]['robot'] == True:
            node.is_robot = True
            scene.robot = node

        scene.nodes.append(node)

    if half_dt:
        # We are interpolating to make the overall dt half of what it was.
        scene.dt /= 2.0
        scene.timesteps *= 2

    return scene
    def process_scene(self, data):
        # Get extent and other data
        traj_data = data.trajectory_data
        comp_key = np.logical_and(traj_data['node_id'] == 'ego',
                                  traj_data['frame_id'] == 0)
        s = traj_data[comp_key].iloc[0]
        ego_initx, ego_inity = s['x'], s['y']
        max_timesteps = traj_data['frame_id'].max()
        x_min = round_to_int(traj_data['x'].min() - 50)
        x_max = round_to_int(traj_data['x'].max() + 50)
        y_min = round_to_int(traj_data['y'].min() - 50)
        y_max = round_to_int(traj_data['y'].max() + 50)
        x_size = x_max - x_min
        y_size = y_max - y_min
        traj_data['x'] = traj_data['x'] - x_min
        traj_data['y'] = traj_data['y'] - y_min

        # Trim points above/below certain Z levels.
        points = data.overhead_points
        z_mask = np.logical_and(points[:, 2] > self.Z_LOWERBOUND,
                                points[:, 2] < self.Z_UPPERBOUND)
        points = data.overhead_points[z_mask]
        labels = data.overhead_labels[z_mask]
        # Select road LIDAR points.
        road_label_mask = labels == SegmentationLabel.Road.value
        road_points = points[road_label_mask]

        # Form bitmap
        bitmap = points_to_2d_histogram(road_points, x_min, x_max, y_min,
                                        y_max, data.scene_config.pixels_per_m)
        bitmap[bitmap > 0] = 1

        # adjust trajectory data
        transform = scipy.ndimage.distance_transform_cdt(-bitmap + 1)
        X = traj_data[['x', 'y']].values
        Xind = (data.scene_config.pixels_per_m * X).astype(int)
        vals = transform[Xind.T[0], Xind.T[1]]
        traj_data = traj_data[vals < self.DISTANCE_FROM_ROAD]

        # Form color image bitmap
        bitmap[bitmap > 0] = 255
        bitmap = np.stack(
            (bitmap, np.zeros(bitmap.shape), np.zeros(bitmap.shape)), axis=0)
        bitmap = bitmap.astype(np.uint8)

        # Create scene
        dt = data.fixed_delta_seconds * data.scene_config.record_interval
        scene = Scene(timesteps=max_timesteps + 1,
                      dt=dt,
                      name=data.scene_name,
                      aug_func=augment)
        scene.ego_initx = ego_initx
        scene.ego_inity = ego_inity
        scene.x_min = x_min
        scene.y_min = y_min
        scene.x_max = x_max
        scene.y_max = y_max

        type_map = dict()

        scene.map_name = data.map_name
        scene.x_size = x_size
        scene.y_size = y_size

        patch_box = (x_min + 0.5 * (x_max - x_min),
                     y_min + 0.5 * (y_max - y_min), y_size, x_size)
        patch_angle = 0
        canvas_size = (np.round(3 * y_size).astype(int),
                       np.round(3 * x_size).astype(int))
        homography = np.array([[3., 0., 0.], [0., 3., 0.], [0., 0., 3.]])
        layer_names = ['drivable_area']

        scene.patch_box = patch_box
        scene.patch_angle = patch_angle
        scene.canvas_size = canvas_size
        scene.homography = homography
        scene.layer_names = layer_names

        type_map['VEHICLE'] = GeometricMap(data=bitmap,
                                           homography=homography,
                                           description=', '.join(layer_names))
        type_map['VISUALIZATION'] = GeometricMap(
            data=bitmap,
            homography=homography,
            description=', '.join(layer_names))
        scene.map = type_map
        scene_config = data.scene_config
        del bitmap
        del points
        del labels
        del road_points
        del data
        return process_trajectron_scene(scene, traj_data, max_timesteps,
                                        scene_config)