Beispiel #1
0
if __name__ == '__main__':
    global world
    rospy.init_node('ddpg')
    pub_result = rospy.Publisher('result', String, queue_size=5)
    ep_0 = rospy.get_param('~ep_number')
    world = rospy.get_param('~file_path')
    MAX_STEPS = rospy.get_param('~max_steps')
    # MAX_STEPS = 50

    if (ep_0 != 0):
        trainer.load_models(ep_0)

    rospy.loginfo("Starting at episode: %s ", str(ep_0))

    result = Float32()
    env = Env(action_dim=ACTION_DIMENSION)
    before_training = 4
    past_action = np.zeros(ACTION_DIMENSION)

    for ep in range(ep_0, MAX_EPISODES):
        done = False
        state = env.reset()
        if is_training and not ep % 10 == 0 and len(
                replay_buffer) >= before_training * BATCH_SIZE:
            rospy.loginfo("---------------------------------")
            rospy.loginfo("Episode: %s training", str(ep))
            rospy.loginfo("---------------------------------")
        else:
            if len(replay_buffer) >= before_training * BATCH_SIZE:
                rospy.loginfo("---------------------------------")
                rospy.loginfo("Episode: %s evaluating", str(ep))
Beispiel #2
0
if __name__ == '__main__':
    global world
    rospy.init_node('sac')
    pub_result = rospy.Publisher('result', String, queue_size=5)
    ep_0 = rospy.get_param('~ep_number')
    world = rospy.get_param('~file_path') 
    max_steps = rospy.get_param('~max_steps') 

    if (ep_0 != 0):
        agent.load_models(ep_0)

    rospy.loginfo("Starting at episode: %s ", str(ep_0))
 
    result = Float32()
    env = Env()
    before_training = 4
    past_action = np.array([0.,0.])

    for ep in range(ep_0, max_episodes):
        done = False
        state = env.reset()        
        if is_training and not ep%10 == 0 and len(replay_buffer) > before_training*batch_size:
            rospy.loginfo("---------------------------------")
            rospy.loginfo("Episode: %s training", str(ep))
            rospy.loginfo("---------------------------------")
        else:
            if len(replay_buffer) > before_training*batch_size:
                rospy.loginfo("---------------------------------")
                rospy.loginfo("Episode: %s evaluating", str(ep))
                rospy.loginfo("---------------------------------")