Beispiel #1
0
def evaluate(
        dt: float,
        epoch: int,
        env: Env,
        agent: Agent,
        eval_gap: float,  # noqa: C901
        time_limit: Optional[float] = None,
        eval_return: bool = False,
        progress_bar: bool = False,
        video: bool = False,
        no_log: bool = False,
        test: bool = False,
        eval_policy: bool = True) -> Optional[float]:
    """Evaluate agent in environment.

    :args dt: time discretization
    :args epoch: index of the current epoch
    :args env: environment
    :args agent: interacting agent
    :args eval_gap: number of normalized epochs (epochs divided by dt)
        between training steps
    :args time_limit: maximal physical time (number of steps divided by dt)
        spent in the environment
    :args eval_return: do we only perform specific evaluation?
    :args progress_bar: use a progress bar?
    :args video: log a video of the interaction?
    :args no_log: do we log results
    :args test: log to a different test summary
    :args eval_policy: if the exploitation policy is noisy,
        remove the noise before evaluating

    :return: return evaluated, None if no return is evaluated
    """
    log_gap = int(eval_gap / dt)
    agent.eval()
    if not eval_policy and isinstance(agent, OnlineAgent):
        agent.noisy_eval()
    agent.reset()
    R = None
    if eval_return:
        rewards, dones = [], []
        imgs = []
        time_limit = time_limit if time_limit else 10
        nb_steps = int(time_limit / dt)
        info(f"eval> evaluating on a physical time {time_limit}"
             f" ({nb_steps} steps in total)")
        obs = env.reset()
        iter_range = tqdm(range(nb_steps)) if progress_bar else range(nb_steps)
        for _ in iter_range:
            obs, reward, done = interact(env, agent, obs)
            rewards.append(reward)
            dones.append(done)
            if video:
                imgs.append(env.render(mode='rgb_array'))
        R = compute_return(np.stack(rewards, axis=0), np.stack(dones, axis=0))
        tag = "noisy" if not eval_policy else ""
        info(f"eval> At epoch {epoch}, {tag} return: {R}")
        if not no_log:
            if not eval_policy:
                log("Return_noisy", R, epoch)
            elif not video:  # don't log when outputing video
                if not test:
                    log("Return", R, epoch)
                else:
                    log("Return_test", R, epoch)
        if video:
            log_video("demo", epoch, np.stack(imgs, axis=0))

    if not no_log:
        specific_evaluation(epoch, log_gap, dt, env, agent)
    return R
Beispiel #2
0
def main(args):
    if args.seed == -1:
        args.__dict__["seed"] = np.random.randint(1, 1000000)
    utils.set_seed_everywhere(args.seed)

    args.__dict__ = update_env_kwargs(args.__dict__)  # Update env_kwargs

    symbolic = args.env_kwargs['observation_mode'] != 'cam_rgb'
    args.encoder_type = 'identity' if symbolic else 'pixel'

    env = Env(args.env_name,
              symbolic,
              args.seed,
              200,
              1,
              8,
              args.pre_transform_image_size,
              env_kwargs=args.env_kwargs,
              normalize_observation=False,
              scale_reward=args.scale_reward,
              clip_obs=args.clip_obs)
    env.seed(args.seed)

    # make directory
    ts = time.gmtime()
    ts = time.strftime("%m-%d", ts)

    args.work_dir = logger.get_dir()

    video_dir = utils.make_dir(os.path.join(args.work_dir, 'video'))
    model_dir = utils.make_dir(os.path.join(args.work_dir, 'model'))
    buffer_dir = utils.make_dir(os.path.join(args.work_dir, 'buffer'))

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    action_shape = env.action_space.shape

    if args.encoder_type == 'pixel':
        obs_shape = (3, args.image_size, args.image_size)
        pre_aug_obs_shape = (3, args.pre_transform_image_size,
                             args.pre_transform_image_size)
    else:
        obs_shape = env.observation_space.shape
        pre_aug_obs_shape = obs_shape

    replay_buffer = utils.ReplayBuffer(
        obs_shape=pre_aug_obs_shape,
        action_shape=action_shape,
        capacity=args.replay_buffer_capacity,
        batch_size=args.batch_size,
        device=device,
        image_size=args.image_size,
    )

    agent = make_agent(obs_shape=obs_shape,
                       action_shape=action_shape,
                       args=args,
                       device=device)

    L = Logger(args.work_dir, use_tb=args.save_tb, chester_logger=logger)

    episode, episode_reward, done, ep_info = 0, 0, True, []
    start_time = time.time()
    for step in range(args.num_train_steps):
        # evaluate agent periodically

        if step % args.eval_freq == 0:
            L.log('eval/episode', episode, step)
            evaluate(env, agent, video_dir, args.num_eval_episodes, L, step,
                     args)
            if args.save_model and (step % (args.eval_freq * 5) == 0):
                agent.save(model_dir, step)
            if args.save_buffer:
                replay_buffer.save(buffer_dir)
        if done:
            if step > 0:
                if step % args.log_interval == 0:
                    L.log('train/duration', time.time() - start_time, step)
                    for key, val in get_info_stats([ep_info]).items():
                        L.log('train/info_' + key, val, step)
                    L.dump(step)
                start_time = time.time()
            if step % args.log_interval == 0:
                L.log('train/episode_reward', episode_reward, step)

            obs = env.reset()
            done = False
            ep_info = []
            episode_reward = 0
            episode_step = 0
            episode += 1
            if step % args.log_interval == 0:
                L.log('train/episode', episode, step)

        # sample action for data collection
        if step < args.init_steps:
            action = env.action_space.sample()
        else:
            with utils.eval_mode(agent):
                action = agent.sample_action(obs)

        # run training update
        if step >= args.init_steps:
            num_updates = 1
            for _ in range(num_updates):
                agent.update(replay_buffer, L, step)
        next_obs, reward, done, info = env.step(action)

        # allow infinit bootstrap
        ep_info.append(info)
        done_bool = 0 if episode_step + 1 == env.horizon else float(done)
        episode_reward += reward
        replay_buffer.add(obs, action, reward, next_obs, done_bool)

        obs = next_obs
        episode_step += 1
Beispiel #3
0
else:
    args.device = torch.device('cpu')
metrics = {'steps': [], 'episodes': [], 'train_rewards': [], 'test_episodes': [], 'test_rewards': [],
           'observation_loss': [], 'reward_loss': [], 'kl_loss': []}

# Initialise training environment and experience replay memory
env = Env(args.env, args.symbolic_env, args.seed, args.max_episode_length, args.action_repeat, args.bit_dpth)
if args.experience_replay is not '' and os.path.exists(args.experience_replay):
    D = torch.load(args.experience_replay)
    metrics['steps'], metrics['episodes'] = [D.steps] * D.episodes, list(range(1, D.episodes + 1))
elif not args.test:
    D = ExperienceReplay(args.experience_size, args.symbolic_env, env.observation_size, env.action_size, args.bit_depth,
                         args.device)
    # Initialise dataset D with S random seed episodes
    for s in range(1, args.seed_episodes + 1):
        observation, done, t = env.reset(), False, 0
        while not done:
            action = env.sample_random_action()
            next_observation, reward, done = env.step(action)
            D.append(observation, action, reward, done)
            observation = next_observation
            t += 1
        metrics['steps'].append(t * args.action_repeat + (0 if len(metrics['steps']) == 0 else metrics['steps'][-1]))
        metrics['episodes'].append(s)

# Initialise model parameters randomly
transition_model = TransitionModel(args.belief_size, args.state_size, env.action_size, args.hidden_size,
                                   args.embedding_size, args.activation_function).to(device=args.device)
observation_model = ObservationModel(args.symbolic_env, env.observation_size, args.belief_size, args.state_size,
                                     args.embedding_size, args.activation_function).to(device=args.device)
reward_model = RewardModel(args.belief_size, args.state_size, args.hidden_size, args.activation_function).to(