Beispiel #1
0
def generate_motion_csv(output_dir, site_tag, soil_amp):
    """Produce scenario motion CSV files.
    (previously produced if save_motion=True)

    Parameters:
    output_dir - path to directory where the simulation data has been produced,
                 and where the output files will be placed
    site_tag   - used to identify the appropriate data as input
    is_bedrock - if True use bedrock results, else use soil results
    """

    # EQRM flags
    eqrm_flags = create_parameter_data(os.path.join(output_dir, "eqrm_flags.py"))

    # Ground motion
    motion, atten_periods = load_motion(output_dir, site_tag, soil_amp, file_format="binary")

    return save_motion_to_csv(soil_amp, eqrm_flags, motion)
def generate_motion_csv(output_dir,
                        site_tag,
                        soil_amp):
    """Produce scenario motion CSV files.
    (previously produced if save_motion=True)

    Parameters:
    output_dir - path to directory where the simulation data has been produced,
                 and where the output files will be placed
    site_tag   - used to identify the appropriate data as input
    is_bedrock - if True use bedrock results, else use soil results
    """

    # EQRM flags
    eqrm_flags = create_parameter_data(
        os.path.join(output_dir, 'eqrm_flags.py'))

    # Ground motion
    motion, atten_periods = load_motion(output_dir,
                                        site_tag, soil_amp,
                                        file_format='binary')

    return save_motion_to_csv(soil_amp, eqrm_flags, motion)
def events_shaking_a_site(output_dir,
                          site_tag,
                          site_lat,
                          site_lon,
                          period,
                          soil_amp,
                          file_format='binary'):
    """events_shaking_a_site
    Given disaggregated output data produce a csv file showing ground motion
    and event information for the given site and period.

    Parameters:
    output_dir - path to directory where the simulation data has been produced,
                 and where the output files will be placed
    site_tag   - used to identify the appropriate data as input
    site_lat   - site latitude
    site_lon   - site longitude (use the closest site as the cockey flies)
    period     - attenuation period (must be an exact match)
    soil_amp   - if True use soil results, else use bedrock results

    Output file:
    <output_dir>/
    - if soil_amp:
    <site_tag>_bedrock_SA_events_ap[<period>]_lat[<site_lat>]_lon[<site_lon>].csv
    - else:
    <site_tag>_soil_SA_events_ap[<period>]_lat[<site_lat>]_lon[<site_lon>].csv

    Columns:
    'ground_motion'         - ground motion value
    'ground_motion_model'   - ground motion model used
    'trace_start_lat'       - rupture trace start latitude
    'trace_start_lon'       - rupture trace start longitude
    'trace_end_lat'         - rupture trace end latitude
    'trace_end_lon'         - rupture trace end longitude
    'rupture_centroid_lat'  - rupture centroid latitude
    'rupture_centroid_lon'  - rupture centroid longitude
    'depth'                 - rupture depth to centroid (km)
    'azimuth'               - rupture azimuth (degrees from true North)
    'dip'                   - rupture dip
    'Mw'                    - rupture moment magnitude
    'length'                - rupture length
    'width'                 - rupture width
    'activity'              - event activity (probability that the event will
                              occur this year)
    'Rjb'                   - Joyner-Boore distance to rupture plane
    'Rrup'                  - Closest distance to rupture plane
    'site_lat'              - Closest site latitude
    'site_lon'              - Closest site longitude
    """

    # Ground motion
    motion, atten_periods = load_motion(output_dir,
                                        site_tag, soil_amp, file_format)

    if period not in atten_periods:
        raise Exception("Period %s not in atten_periods %s" % (period,
                                                               atten_periods))
    period_ind = where(period == atten_periods)[0][0]

    parallel = Parallel(is_parallel=False)

    # Event set objects
    (event_set,
     event_activity,
     source_model) = load_event_set(parallel,
                                    os.path.join(output_dir,
                                                 '%s_event_set' % site_tag))

    # Site objects
    sites = load_sites(
        parallel,
        os.path.join(
            output_dir,
            '%s_sites' %
            site_tag))
    closest_site_ind = sites.closest_site(site_lat, site_lon)
    closest_site_lat = sites[closest_site_ind].latitude[0]
    closest_site_lon = sites[closest_site_ind].longitude[0]


    # Get the motion that corresponds to this site, collapsing spawn, rm, period
    # Motion dimensions - spawn, gmm, rm, sites, events, period
    motion_for_site = motion[0, :, 0, closest_site_ind,:, period_ind]

    (event_set.trace_end_lat,
     event_set.trace_end_lon) = xy_to_ll(event_set.rupture_centroid_x,
                                         -event_set.rupture_centroid_y,
                                         event_set.rupture_centroid_lat,
                                         event_set.rupture_centroid_lon,
                                         event_set.azimuth)

    # Event activity dimensions - spawn, gmm, rm, events
    # Collapse spawn and rm
    event_activity = event_activity.event_activity[0, :, 0,:]

    # Distances
    Rjb = sites.distances_from_event_set(event_set).distance('Joyner_Boore')
    Rjb_for_site = Rjb.swapaxes(0, 1)[:, closest_site_ind]
    Rrup = sites.distances_from_event_set(event_set).distance('Rupture')
    Rrup_for_site = Rrup.swapaxes(0, 1)[:, closest_site_ind]

    if soil_amp is True:
        motion_name = 'soil_SA'
    elif soil_amp is False:
        motion_name = 'bedrock_SA'
    else:
        raise IOError("soil_amp must be True or False")

    # Create file and write headers
    filename = '%s_%s_events_ap%s_lat%s_lon%s.csv' % (site_tag,
                                                      motion_name,
                                                      period,
                                                      closest_site_lat,
                                                      closest_site_lon)
    handle = csv.writer(open(os.path.join(output_dir, filename), 'w'))
    handle.writerow(['ground_motion',
                     'ground_motion_model',
                     'trace_start_lat',
                     'trace_start_lon',
                     'trace_end_lat',
                     'trace_end_lon',
                     'rupture_centroid_lat',
                     'rupture_centroid_lon',
                     'depth',
                     'azimuth',
                     'dip',
                     'Mw',
                     'length',
                     'width',
                     'activity',
                     'Rjb',
                     'Rrup',
                     'site_lat',
                     'site_lon'])

    # Loop over events
    for i in range(motion_for_site.shape[1]):  # events
        trace_start_lat = event_set.trace_start_lat[i]
        trace_start_lon = event_set.trace_start_lon[i]
        trace_end_lat = event_set.trace_end_lat[i]
        trace_end_lon = event_set.trace_end_lon[i]
        rupture_centroid_lat = event_set.rupture_centroid_lat[i]
        rupture_centroid_lon = event_set.rupture_centroid_lon[i]
        depth = event_set.depth[i]
        azimuth = event_set.azimuth[i]
        dip = event_set.dip[i]
        mw = event_set.Mw[i]
        length = event_set.length[i]
        width = event_set.width[i]

        rjb = Rjb_for_site[i]
        rrup = Rrup_for_site[i]

        ground_motion = motion_for_site[:, i]
        activity = event_activity[:, i]

        event_source = source_model[int(event_set.source[i])]
        for gmm_ind, gmm in enumerate(event_source.atten_models):
            handle.writerow([ground_motion[gmm_ind],
                             gmm,
                             trace_start_lat,
                             trace_start_lon,
                             trace_end_lat,
                             trace_end_lon,
                             rupture_centroid_lat,
                             rupture_centroid_lon,
                             depth,
                             azimuth,
                             dip,
                             mw,
                             length,
                             width,
                             activity[gmm_ind],
                             rjb,
                             rrup,
                             closest_site_lat,
                             closest_site_lon])

    return os.path.join(output_dir, filename)
Beispiel #4
0
def events_shaking_a_site(output_dir, site_tag, site_lat, site_lon, period, soil_amp, file_format="binary"):
    """events_shaking_a_site
    Given disaggregated output data produce a csv file showing ground motion
    and event information for the given site and period.

    Parameters:
    output_dir - path to directory where the simulation data has been produced,
                 and where the output files will be placed
    site_tag   - used to identify the appropriate data as input
    site_lat   - site latitude
    site_lon   - site longitude (use the closest site as the cockey flies)
    period     - attenuation period (must be an exact match)
    soil_amp   - if True use soil results, else use bedrock results

    Output file:
    <output_dir>/
    - if soil_amp:
    <site_tag>_bedrock_SA_events_ap[<period>]_lat[<site_lat>]_lon[<site_lon>].csv
    - else:
    <site_tag>_soil_SA_events_ap[<period>]_lat[<site_lat>]_lon[<site_lon>].csv

    Columns:
    'ground_motion'         - ground motion value
    'ground_motion_model'   - ground motion model used
    'trace_start_lat'       - rupture trace start latitude
    'trace_start_lon'       - rupture trace start longitude
    'trace_end_lat'         - rupture trace end latitude
    'trace_end_lon'         - rupture trace end longitude
    'rupture_centroid_lat'  - rupture centroid latitude
    'rupture_centroid_lon'  - rupture centroid longitude
    'depth'                 - rupture depth to centroid (km)
    'azimuth'               - rupture azimuth (degrees from true North)
    'dip'                   - rupture dip
    'Mw'                    - rupture moment magnitude
    'length'                - rupture length
    'width'                 - rupture width
    'activity'              - event activity (probability that the event will
                              occur this year)
    'Rjb'                   - Joyner-Boore distance to rupture plane
    'Rrup'                  - Closest distance to rupture plane
    'site_lat'              - Closest site latitude
    'site_lon'              - Closest site longitude
    """

    # Ground motion
    motion, atten_periods = load_motion(output_dir, site_tag, soil_amp, file_format)

    if period not in atten_periods:
        raise Exception("Period %s not in atten_periods %s" % (period, atten_periods))
    period_ind = where(period == atten_periods)[0][0]

    parallel = Parallel(is_parallel=False)

    # Event set objects
    (event_set, event_activity, source_model) = load_event_set(
        parallel, os.path.join(output_dir, "%s_event_set" % site_tag)
    )

    # Site objects
    sites = load_sites(parallel, os.path.join(output_dir, "%s_sites" % site_tag))
    closest_site_ind = sites.closest_site(site_lat, site_lon)
    closest_site_lat = sites[closest_site_ind].latitude[0]
    closest_site_lon = sites[closest_site_ind].longitude[0]

    # Get the motion that corresponds to this site, collapsing spawn, rm, period
    # Motion dimensions - spawn, gmm, rm, sites, events, period
    motion_for_site = motion[0, :, 0, closest_site_ind, :, period_ind]

    (event_set.trace_end_lat, event_set.trace_end_lon) = xy_to_ll(
        event_set.rupture_centroid_x,
        -event_set.rupture_centroid_y,
        event_set.rupture_centroid_lat,
        event_set.rupture_centroid_lon,
        event_set.azimuth,
    )

    # Event activity dimensions - spawn, gmm, rm, events
    # Collapse spawn and rm
    event_activity = event_activity.event_activity[0, :, 0, :]

    # Distances
    Rjb = sites.distances_from_event_set(event_set).distance("Joyner_Boore")
    Rjb_for_site = Rjb.swapaxes(0, 1)[:, closest_site_ind]
    Rrup = sites.distances_from_event_set(event_set).distance("Rupture")
    Rrup_for_site = Rrup.swapaxes(0, 1)[:, closest_site_ind]

    if soil_amp is True:
        motion_name = "soil_SA"
    elif soil_amp is False:
        motion_name = "bedrock_SA"
    else:
        raise IOError("soil_amp must be True or False")

    # Create file and write headers
    filename = "%s_%s_events_ap%s_lat%s_lon%s.csv" % (site_tag, motion_name, period, closest_site_lat, closest_site_lon)
    handle = csv.writer(open(os.path.join(output_dir, filename), "w"))
    handle.writerow(
        [
            "ground_motion",
            "ground_motion_model",
            "trace_start_lat",
            "trace_start_lon",
            "trace_end_lat",
            "trace_end_lon",
            "rupture_centroid_lat",
            "rupture_centroid_lon",
            "depth",
            "azimuth",
            "dip",
            "Mw",
            "length",
            "width",
            "activity",
            "Rjb",
            "Rrup",
            "site_lat",
            "site_lon",
        ]
    )

    # Loop over events
    for i in range(motion_for_site.shape[1]):  # events
        trace_start_lat = event_set.trace_start_lat[i]
        trace_start_lon = event_set.trace_start_lon[i]
        trace_end_lat = event_set.trace_end_lat[i]
        trace_end_lon = event_set.trace_end_lon[i]
        rupture_centroid_lat = event_set.rupture_centroid_lat[i]
        rupture_centroid_lon = event_set.rupture_centroid_lon[i]
        depth = event_set.depth[i]
        azimuth = event_set.azimuth[i]
        dip = event_set.dip[i]
        mw = event_set.Mw[i]
        length = event_set.length[i]
        width = event_set.width[i]

        rjb = Rjb_for_site[i]
        rrup = Rrup_for_site[i]

        ground_motion = motion_for_site[:, i]
        activity = event_activity[:, i]

        event_source = source_model[int(event_set.source[i])]
        for gmm_ind, gmm in enumerate(event_source.atten_models):
            handle.writerow(
                [
                    ground_motion[gmm_ind],
                    gmm,
                    trace_start_lat,
                    trace_start_lon,
                    trace_end_lat,
                    trace_end_lon,
                    rupture_centroid_lat,
                    rupture_centroid_lon,
                    depth,
                    azimuth,
                    dip,
                    mw,
                    length,
                    width,
                    activity[gmm_ind],
                    rjb,
                    rrup,
                    closest_site_lat,
                    closest_site_lon,
                ]
            )

    return os.path.join(output_dir, filename)