Beispiel #1
0
    def _set_statistics(self):
        """
        Private method that is used within the statistics routines.

        """
        if self.statistics_object is None:
            if hasattr(self, 'inv_R_Psi'):
                # quad_pts, quad_wts = self.quadrature.get_points_and_weights()
                N_quad = 20000
                quad_pts = self.corr.get_correlated_samples(N=N_quad)
                quad_wts = 1.0 / N_quad * np.ones(N_quad)
                poly_vandermonde_matrix = self.get_poly(quad_pts)
            elif self.method != 'numerical-integration' and self.dimensions <= 6 and self.highest_order <= MAXIMUM_ORDER_FOR_STATS:
                quad = Quadrature(parameters=self.parameters, basis=Basis('tensor-grid', orders= np.array(self.parameters_order) + 1), \
                    mesh='tensor-grid', points=None)
                quad_pts, quad_wts = quad.get_points_and_weights()
                poly_vandermonde_matrix = self.get_poly(quad_pts)
            elif self.mesh == 'monte-carlo':
                quad = Quadrature(parameters=self.parameters,
                                  basis=self.basis,
                                  mesh=self.mesh,
                                  points=None,
                                  oversampling=10.0)
                quad_pts, quad_wts = quad.get_points_and_weights()
                N_quad = len(quad_wts)
                quad_wts = 1.0 / N_quad * np.ones(N_quad)
                poly_vandermonde_matrix = self.get_poly(quad_pts)
            else:
                poly_vandermonde_matrix = self.get_poly(
                    self._quadrature_points)
                quad_pts, quad_wts = self.get_points_and_weights()

            if self.highest_order <= MAXIMUM_ORDER_FOR_STATS and (
                    self.basis.basis_type.lower() == 'total-order'
                    or self.basis.basis_type.lower() == 'hyperbolic-basis'):
                self.statistics_object = Statistics(self.parameters, self.basis,  self.coefficients,  quad_pts, \
                        quad_wts, poly_vandermonde_matrix, max_sobol_order=self.highest_order)
            else:
                self.statistics_object = Statistics(self.parameters, self.basis,  self.coefficients,  quad_pts, \
                        quad_wts, poly_vandermonde_matrix, max_sobol_order=MAXIMUM_ORDER_FOR_STATS)
Beispiel #2
0
    def _set_statistics(self):
        """
        Private method that is used withn the statistics routines.

        """
        if self.statistics_object is None:
            if self.method != 'numerical-integration' and self.dimensions <= 6 and self.highest_order <= MAXIMUM_ORDER_FOR_STATS:
                quad = Quadrature(parameters=self.parameters, basis=Basis('tensor-grid', orders= np.array(self.parameters_order) + 1), \
                    mesh='tensor-grid', points=None)
                quad_pts, quad_wts = quad.get_points_and_weights()
                poly_vandermonde_matrix = self.get_poly(quad_pts)
            else:
                poly_vandermonde_matrix = self.get_poly(self._quadrature_points)
                quad_pts, quad_wts = self.get_points_and_weights()

            if self.highest_order <= MAXIMUM_ORDER_FOR_STATS:
                self.statistics_object = Statistics(self.parameters, self.basis,  self.coefficients,  quad_pts, \
                        quad_wts, poly_vandermonde_matrix, max_sobol_order=self.highest_order)
            else:
                self.statistics_object = Statistics(self.parameters, self.basis,  self.coefficients,  quad_pts, \
                        quad_wts, poly_vandermonde_matrix, max_sobol_order=MAXIMUM_ORDER_FOR_STATS)
class Poly(object):
    """
    Definition of a polynomial object.

    :param list parameters: A list of parameters, where each element of the list is an instance of the Parameter class.
    :param Basis basis: An instance of the Basis class corresponding to the multi-index set used.
    :param str method: The method used for computing the coefficients. Should be one of: ``compressive-sensing``,
        ``numerical-integration``, ``least-squares``, ``least-squares-with-gradients``, ``minimum-norm``.
    :param dict sampling_args: Optional arguments centered around the specific sampling strategy.

            :string mesh: Avaliable options are: ``monte-carlo``, ``sparse-grid``, ``tensor-grid``, ``induced``, or ``user-defined``. Note that when the ``sparse-grid`` option is invoked, the sparse pseudospectral approximation method [1] is the adopted. One can think of this as being the correct way to use sparse grids in the context of polynomial chaos [2] techniques.
            :string subsampling-algorithm: The ``subsampling-algorithm`` input refers to the optimisation technique for subsampling. In the aforementioned four sampling strategies, we generate a logarithm factor of samples above the required amount and prune down the samples using an optimisation technique (see [1]). Existing optimisation strategies include: ``qr``, ``lu``, ``svd``, ``newton``. These refer to QR with column pivoting [2], LU with row pivoting [3], singular value decomposition with subset selection [2] and a convex relaxation via Newton's method for determinant maximization [4]. Note that if the ``tensor-grid`` option is selected, then subsampling will depend on whether the Basis argument is a total order index set, hyperbolic basis or a tensor order index set.
            :float sampling-ratio: Denotes the extent of undersampling or oversampling required. For values equal to unity (default), the number of rows and columns of the associated Vandermonde-type matrix are equal.
            :numpy.ndarray sample-points: A numpy ndarray with shape (number_of_observations, dimensions) that corresponds to a set of sample points over the parameter space.
            :numpy.ndarray sample-outputs: A numpy ndarray with shape (number_of_observations, 1) that corresponds to model evaluations at the sample points. Note that if ``sample-points`` is provided as an input, then the code expects ``sample-outputs`` too.
            :numpy.ndarray sample-gradients: A numpy ndarray with shape (number_of_observations, dimensions) that corresponds to a set of sample gradient values over the parameter space.
    :param dict solver_args: Optional arguments centered around the specific solver used for computing the coefficients.

            :numpy.ndarray noise-level: The noise level to be used. Can take in both scalar- and vector-valued inputs.
            :bool verbose: The default value is set to ``False``; when set to ``True`` details on the convergence of the solution will be provided. Note for direct methods, this will simply output the condition number of the matrix.

    **Sample constructor initialisations**::

        import numpy as np
        from equadratures import *

        # Subsampling from a tensor grid
        param = Parameter(distribution='uniform', lower=-1., upper=1., order=3)
        basis = Basis('total order')
        poly = Poly(parameters=[param, param], basis=basis, method='least-squares' , sampling_args={'mesh':'tensor-grid', 'subsampling-algorithm':'svd', 'sampling-ratio':1.0})

        # User-defined data with compressive sensing
        X = np.loadtxt('inputs.txt')
        y = np.loadtxt('outputs.txt')
        param = Parameter(distribution='uniform', lower=-1., upper=1., order=3)
        basis = Basis('total order')
        poly = Poly([param, param], basis, method='compressive-sensing', sampling_args={'sample-points':X_red, \
                                                               'sample-outputs':Y_red})

        # Using a sparse grid
        param = Parameter(distribution='uniform', lower=-1., upper=1., order=3)
        basis = Basis('sparse-grid', level=7, growth_rule='exponential')
        poly = Poly(parameters=[param, param], basis=basis, method='numerical-integration')

    **References**
        1. Constantine, P. G., Eldred, M. S., Phipps, E. T., (2012) Sparse Pseudospectral Approximation Method. Computer Methods in Applied Mechanics and Engineering. 1-12. `Paper <https://www.sciencedirect.com/science/article/pii/S0045782512000953>`__
        2. Xiu, D., Karniadakis, G. E., (2002) The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations. SIAM Journal on Scientific Computing,  24(2), `Paper <https://epubs.siam.org/doi/abs/10.1137/S1064827501387826?journalCode=sjoce3>`__
        3. Seshadri, P., Iaccarino, G., Ghisu, T., (2018) Quadrature Strategies for Constructing Polynomial Approximations. Uncertainty Modeling for Engineering Applications. Springer, Cham, 2019. 1-25. `Preprint <https://arxiv.org/pdf/1805.07296.pdf>`__
        4. Seshadri, P., Narayan, A., Sankaran M., (2017) Effectively Subsampled Quadratures for Least Squares Polynomial Approximations. SIAM/ASA Journal on Uncertainty Quantification, 5(1). `Paper <https://epubs.siam.org/doi/abs/10.1137/16M1057668>`__
        5. Bos, L., De Marchi, S., Sommariva, A., Vianello, M., (2010) Computing Multivariate Fekete and Leja points by Numerical Linear Algebra. SIAM Journal on Numerical Analysis, 48(5). `Paper <https://epubs.siam.org/doi/abs/10.1137/090779024>`__
        6. Joshi, S., Boyd, S., (2009) Sensor Selection via Convex Optimization. IEEE Transactions on Signal Processing, 57(2). `Paper <https://ieeexplore.ieee.org/document/4663892>`__
    """
    def __init__(self,
                 parameters,
                 basis,
                 method=None,
                 sampling_args=None,
                 solver_args=None):
        try:
            len(parameters)
        except TypeError:
            parameters = [parameters]
        self.parameters = parameters
        self.basis = deepcopy(basis)
        self.method = method
        self.sampling_args = sampling_args
        self.solver_args = solver_args
        self.dimensions = len(parameters)
        self.orders = []
        self.gradient_flag = 0
        for i in range(0, self.dimensions):
            self.orders.append(self.parameters[i].order)
        if not self.basis.orders:
            self.basis.set_orders(self.orders)
        # Initialize some default values!
        self.inputs = None
        self.outputs = None
        self.subsampling_algorithm_name = None
        self.sampling_ratio = 1.0
        self.statistics_object = None
        self.parameters_order = [
            parameter.order for parameter in self.parameters
        ]
        self.highest_order = np.max(self.parameters_order)
        if self.method is not None:
            if self.method == 'numerical-integration' or self.method == 'integration':
                self.mesh = self.basis.basis_type
            elif self.method == 'least-squares':
                self.mesh = 'tensor-grid'
            elif self.method == 'least-squares-with-gradients':
                self.gradient_flag = 1
                self.mesh = 'tensor-grid'
            elif self.method == 'compressed-sensing' or self.method == 'compressive-sensing':
                self.mesh = 'monte-carlo'
            elif self.method == 'minimum-norm':
                self.mesh = 'monte-carlo'
            # Now depending on user inputs, override these default values!
            sampling_args_flag = 0
            if self.sampling_args is not None:
                if 'mesh' in sampling_args:
                    self.mesh = sampling_args.get('mesh')
                    sampling_args_flag = 1
                if 'sampling-ratio' in sampling_args:
                    self.sampling_ratio = float(
                        sampling_args.get('sampling-ratio'))
                    sampling_args_flag = 1
                if 'subsampling-algorithm' in sampling_args:
                    self.subsampling_algorithm_name = sampling_args.get(
                        'subsampling-algorithm')
                    sampling_args_flag = 1
                if 'sample-points' in sampling_args:
                    self.inputs = sampling_args.get('sample-points')
                    sampling_args_flag = 1
                    self.mesh = 'user-defined'
                if 'sample-outputs' in sampling_args:
                    self.outputs = sampling_args.get('sample-outputs')
                    sampling_args_flag = 1
                if 'sample-gradients' in sampling_args:
                    self.gradients = sampling_args.get('sample-gradients')
                    sampling_args_flag = 1
                elif sampling_args_flag == 0:
                    raise (
                        ValueError,
                        'An input value that you have specified is likely incorrect. Sampling arguments include: mesh, sampling-ratio, subsampling-algorithm, sample-points, sample-outputs and sample-gradients.'
                    )
            self._set_solver()
            self._set_subsampling_algorithm()
            self._set_points_and_weights()
        else:
            print('WARNING: Method not declared.')

    def _set_parameters(self, parameters):
        """
        Private function that sets the parameters. Required by the Correlated class.

        :param Poly self:
            An instance of the Poly object.
        """
        self.parameters = parameters
        self._set_points_and_weights()

    def get_parameters(self):
        """
        Returns the list of parameters

        :param Poly self:
            An instance of the Poly object.
        """
        return self.parameters

    def get_summary(self, filename=None, tosay=False):
        """
        A simple utility that returns file summarising what the polynomial approximation has determined.

        :param Poly self:
            An instance of the Poly object.
        :param str filename:
            The filename to write to.
        :param bool tosay:
            True will replace "-" signs with "minus" when writing to file for compatibility with os.say().
        """
        prec = '{:.3g}'
        if self.dimensions == 1:
            parameter_string = str('parameter.')
        else:
            parameter_string = str('parameters.')
        introduction = str('Your problem has been defined by ' +
                           str(self.dimensions) + ' ' + parameter_string)
        added = str('Their distributions are given as follows:')
        for i in range(0, self.dimensions):
            added_new = ('\nParameter ' + str(i + 1) + ' ' +
                         str(self.parameters[i].get_description()))
            if i == 0:
                added = introduction + added_new
            else:
                added = added + added_new
        if self.statistics_object is not None:
            mean_value, var_value = self.get_mean_and_variance()
            X = self.get_points()
            y_eval = self.get_polyfit(X)
            y_valid = self._model_evaluations
            a, b, r, _, _ = st.linregress(y_eval.flatten(), y_valid.flatten())
            r2 = r**2
            statistics = '\n \nA summary of computed output statistics is given below:\nThe mean is estimated to be '+ prec.format(mean_value) +\
                ' while the variance is ' + prec.format(var_value) +'.\nFor the data avaliable, the polynomial approximation had a r square value of '+prec.format(r2)+'.'
            if self.dimensions > 1:
                sobol_indices_array = np.argsort(
                    self.get_total_sobol_indices())
                final_value = sobol_indices_array[-1] + 1
                statistics_extra = str(
                    '\nAdditionally, the most important parameter--based on the total Sobol indices--was found to be parameter '
                    + str(final_value) + '.')
                statistics = statistics + statistics_extra
            added = added + statistics
            if (tosay is True):
                added = added.replace('e-', 'e minus')
                added = added.replace('minus0', 'minus')
        if filename is None:
            filename = 'effective-quadratures-output.txt'
        output_file = open(filename, 'w')
        output_file.write(added)
        output_file.close()

    def _set_subsampling_algorithm(self):
        """
        Private function that sets the subsampling algorithm based on the user-defined method.

        :param Poly self:
            An instance of the Poly object.
        """
        polysubsampling = Subsampling(self.subsampling_algorithm_name)
        self.subsampling_algorithm_function = polysubsampling.get_subsampling_method(
        )

    def _set_solver(self):
        """
        Private function that sets the solver depending on the user-defined method.

        :param Poly self:
            An instance of the Poly object.
        """
        polysolver = Solver(self.method, self.solver_args)
        self.solver = polysolver.get_solver()

    def _set_points_and_weights(self):
        """
        Private function that sets the quadrature points.

        :param Poly self:
            An instance of the Poly object.
        """
        self.quadrature = Quadrature(parameters=self.parameters, basis=self.basis, \
                        points=self.inputs, mesh=self.mesh)
        quadrature_points, quadrature_weights = self.quadrature.get_points_and_weights(
        )
        if self.subsampling_algorithm_name is not None:
            P = self.get_poly(quadrature_points)
            W = np.mat(np.diag(np.sqrt(quadrature_weights)))
            A = W * P.T
            self.A = A
            mm, nn = A.shape
            m_refined = int(np.round(self.sampling_ratio * nn))
            z = self.subsampling_algorithm_function(A, m_refined)
            self._quadrature_points = quadrature_points[z, :]
            self._quadrature_weights = quadrature_weights[z] / np.sum(
                quadrature_weights[z])
        else:
            self._quadrature_points = quadrature_points
            self._quadrature_weights = quadrature_weights
            P = self.get_poly(quadrature_points)
            W = np.mat(np.diag(np.sqrt(quadrature_weights)))
            A = W * P.T
            self.A = A

    def get_model_evaluations(self):
        """
        Returns the points at which the model was evaluated at.

        :param Poly self:
            An instance of the Poly class.
        """
        return self._model_evaluations

    def get_mean_and_variance(self):
        """
        Computes the mean and variance of the model.

        :param Poly self:
            An instance of the Poly class.

        :return:
            **mean**: The approximated mean of the polynomial fit; output as a float.

            **variance**: The approximated variance of the polynomial fit; output as a float.

        """
        self._set_statistics()
        return self.statistics_object.get_mean(
        ), self.statistics_object.get_variance()

    def get_skewness_and_kurtosis(self):
        """
        Computes the skewness and kurtosis of the model.

        :param Poly self:
            An instance of the Poly class.

        :return:
            **skewness**: The approximated skewness of the polynomial fit; output as a float.

            **kurtosis**: The approximated kurtosis of the polynomial fit; output as a float.

        """
        self._set_statistics()
        return self.statistics_object.get_skewness(
        ), self.statistics_object.get_kurtosis()

    def _set_statistics(self):
        """
        Private method that is used withn the statistics routines.

        """
        if self.statistics_object is None:
            if self.method != 'numerical-integration' and self.dimensions <= 6 and self.highest_order <= MAXIMUM_ORDER_FOR_STATS:
                quad = Quadrature(parameters=self.parameters, basis=Basis('tensor-grid', orders= np.array(self.parameters_order) + 1), \
                    mesh='tensor-grid', points=None)
                quad_pts, quad_wts = quad.get_points_and_weights()
                poly_vandermonde_matrix = self.get_poly(quad_pts)
            else:
                poly_vandermonde_matrix = self.get_poly(
                    self._quadrature_points)
                quad_pts, quad_wts = self.get_points_and_weights()

            if self.highest_order <= MAXIMUM_ORDER_FOR_STATS:
                self.statistics_object = Statistics(self.parameters, self.basis,  self.coefficients,  quad_pts, \
                        quad_wts, poly_vandermonde_matrix, max_sobol_order=self.highest_order)
            else:
                self.statistics_object = Statistics(self.parameters, self.basis,  self.coefficients,  quad_pts, \
                        quad_wts, poly_vandermonde_matrix, max_sobol_order=MAXIMUM_ORDER_FOR_STATS)

    def get_sobol_indices(self, order):
        """
        Computes the Sobol' indices.

        :param Poly self:
            An instance of the Poly class.
        :param int highest_sobol_order_to_compute:
            The order of the Sobol' indices required.

        :return:
            **sobol_indices**: A dict comprising of Sobol' indices and constitutent mixed orders of the parameters.
        """
        self._set_statistics()
        return self.statistics_object.get_sobol(order)

    def get_total_sobol_indices(self):
        """
        Computes the total Sobol' indices.

        :param Poly self:
            An instance of the Poly class.

        :return:
            **total_sobol_indices**: Sobol
        """
        self._set_statistics()
        return self.statistics_object.get_sobol_total()

    def get_conditional_skewness_indices(self, order):
        """
        Computes the skewness indices.

        :param Poly self:
            An instance of the Poly class.
        :param int order:
            The highest order of the skewness indices required.

        :return:
            **skewness_indices**: A dict comprising of skewness indices and constitutent mixed orders of the parameters.
        """
        self._set_statistics()
        return self.statistics_object.get_conditional_skewness(order)

    def get_conditional_kurtosis_indices(self, order):
        """
        Computes the kurtosis indices.

        :param Poly self:
            An instance of the Poly class.
        :param int order:
            The highest order of the kurtosis indices required.

        :return:
            **kurtosis_indices**: A dict comprising of kurtosis indices and constitutent mixed orders of the parameters.
        """
        self._set_statistics()
        return self.statistics_object.get_conditional_kurtosis(order)

    def set_model(self, model=None, model_grads=None):
        """
        Computes the coefficients of the polynomial via the method selected.

        :param Poly self:
            An instance of the Poly class.
        :param callable model:
            The function that needs to be approximated. In the absence of a callable function, the input can be the function evaluated at the quadrature points.
        :param callable model_grads:
            The gradient of the function that needs to be approximated. In the absence of a callable gradient function, the input can be a matrix of gradient evaluations at the quadrature points.
        """
        if (model is None) and (self.outputs is not None):
            self._model_evaluations = self.outputs
        else:
            if callable(model):
                y = evaluate_model(self._quadrature_points, model)
            else:
                y = model
                assert (y.shape[0] == self._quadrature_points.shape[0])
            if y.shape[1] != 1:
                raise (ValueError, 'model values should be a column vector.')
            self._model_evaluations = y
            if self.gradient_flag == 1:
                if (model_grads is None) and (self.gradients is not None):
                    grad_values = self.gradients
                else:
                    if callable(model_grads):
                        grad_values = evaluate_model_gradients(
                            self._quadrature_points, model_grads, 'matrix')
                    else:
                        grad_values = model_grads
                p, q = grad_values.shape
                self._gradient_evaluations = np.zeros((p * q, 1))
                W = np.diag(np.sqrt(self._quadrature_weights))
                counter = 0
                for j in range(0, q):
                    for i in range(0, p):
                        self._gradient_evaluations[counter] = W[
                            i, i] * grad_values[i, j]
                        counter = counter + 1
                del grad_values
        self.statistics_object = None
        self._set_coefficients()

    def _set_coefficients(self, user_defined_coefficients=None):
        """
        Computes the polynomial approximation coefficients.

        :param Poly self:
            An instance of the Poly object.

        :param numpy.ndarray user_defined_coefficients:
            A numpy.ndarray of shape (N, 1) where N corresponds to the N coefficients provided by the user
        """
        # Check to ensure that if there any NaNs, a different basis must be used and solver must be changed
        # to least squares!
        if user_defined_coefficients is not None:
            self.coefficients = user_defined_coefficients
            return
        indices_with_nans = np.argwhere(np.isnan(self._model_evaluations))[:,
                                                                           0]
        if len(indices_with_nans) is not 0:
            print(
                'WARNING: One or more of your model evaluations have resulted in an NaN. We found '
                + str(len(indices_with_nans)) + ' NaNs out of ' +
                str(len(self._model_evaluations)) + '.')
            print(
                'The code will now use a least-squares technique that will ignore input-output pairs of your model that have NaNs. This will likely compromise computed statistics.'
            )
            self.inputs = np.delete(self._quadrature_points,
                                    indices_with_nans,
                                    axis=0)
            self.outputs = np.delete(self._model_evaluations,
                                     indices_with_nans,
                                     axis=0)
            self.subsampling_algorithm_name = None
            number_of_basis_to_prune_down = self.basis.cardinality - len(
                self.outputs)
            if number_of_basis_to_prune_down > 0:
                self.basis.prune(
                    number_of_basis_to_prune_down +
                    self.dimensions)  # To make it an over-determined system!
            self.method = 'least-squares'
            self.mesh = 'user-defined'
            self._set_solver()
            self._set_points_and_weights()
            self.set_model(self.outputs)
        if self.mesh == 'sparse-grid':
            counter = 0
            multi_index = []
            coefficients = np.empty([1])
            multindices = np.empty([1, self.dimensions])
            for tensor in self.quadrature.list:
                P = self.get_poly(tensor.points, tensor.basis.elements)
                W = np.diag(np.sqrt(tensor.weights))
                A = np.dot(W, P.T)
                _, _, counts = np.unique(np.vstack(
                    [tensor.points, self._quadrature_points]),
                                         axis=0,
                                         return_index=True,
                                         return_counts=True)
                indices = [i for i in range(0, len(counts)) if counts[i] == 2]
                b = np.dot(W, self._model_evaluations[indices])
                del counts, indices
                coefficients_i = self.solver(
                    A, b) * self.quadrature.sparse_weights[counter]
                multindices_i = tensor.basis.elements
                coefficients = np.vstack([coefficients_i, coefficients])
                multindices = np.vstack([multindices_i, multindices])
                counter = counter + 1
            multindices = np.delete(multindices, multindices.shape[0] - 1, 0)
            coefficients = np.delete(coefficients, coefficients.shape[0] - 1)
            unique_indices, indices, counts = np.unique(multindices,
                                                        axis=0,
                                                        return_index=True,
                                                        return_counts=True)
            coefficients_final = np.zeros((unique_indices.shape[0], 1))
            for i in range(0, unique_indices.shape[0]):
                for j in range(0, multindices.shape[0]):
                    if np.array_equiv(unique_indices[i, :], multindices[j, :]):
                        coefficients_final[
                            i] = coefficients_final[i] + coefficients[j]
            self.coefficients = coefficients_final
            self.basis.elements = unique_indices
        else:
            P = self.get_poly(self._quadrature_points)
            W = np.diag(np.sqrt(self._quadrature_weights))
            A = np.dot(W, P.T)
            b = np.dot(W, self._model_evaluations)
            if self.gradient_flag == 1:
                # Now, we can reduce the number of rows!
                dP = self.get_poly_grad(self._quadrature_points)
                C = cell2matrix(dP, W)
                G = np.vstack([A, C])
                r = np.linalg.matrix_rank(G)
                m, n = A.shape
                print(
                    'Gradient computation: The rank of the stacked matrix is '
                    + str(r) + '.')
                print('The number of unknown basis terms is ' + str(n))
                if n > r:
                    print(
                        'WARNING: Please increase the number of samples; one way to do this would be to increase the sampling-ratio.'
                    )
                self.coefficients = self.solver(A, b, C,
                                                self._gradient_evaluations)
            else:
                self.coefficients = self.solver(A, b)

    def get_multi_index(self):
        """
        Returns the multi-index set of the basis.

        :param Poly self:
            An instance of the Poly object.
        :return:
            **multi_indices**: A numpy.ndarray of the coefficients with size (cardinality_of_basis, dimensions).
        """
        return self.basis.elements

    def get_coefficients(self):
        """
        Returns the coefficients of the polynomial approximation.

        :param Poly self:
            An instance of the Poly object.
        :return:
            **coefficients**: A numpy.ndarray of the coefficients with size (number_of_coefficients, 1).
        """
        return self.coefficients

    def get_points(self):
        """
        Returns the samples based on the sampling strategy.

        :param Poly self:
            An instance of the Poly object.
        :return:
            **points**: A numpy.ndarray of sampled quadrature points with shape (number_of_samples, dimension).
        """
        return self._quadrature_points

    def get_weights(self):
        """
        Computes quadrature weights.

        :param Poly self:
            An instance of the Poly class.
        :return:
            **weights**: A numpy.ndarray of the corresponding quadrature weights with shape (number_of_samples, 1).

        """
        return self._quadrature_weights

    def get_points_and_weights(self):
        """
        Returns the samples and weights based on the sampling strategy.

        :param Poly self:
            An instance of the Poly object.
        :return:
            **x**: A numpy.ndarray of sampled quadrature points with shape (number_of_samples, dimension).

            **w**: A numpy.ndarray of the corresponding quadrature weights with shape (number_of_samples, 1).
        """
        return self._quadrature_points, self._quadrature_weights

    def get_polyfit(self, stack_of_points):
        """
        Evaluates the the polynomial approximation of a function (or model data) at prescribed points.

        :param Poly self:
            An instance of the Poly class.
        :param numpy.ndarray stack_of_points:
            An ndarray with shape (number_of_observations, dimensions) at which the polynomial fit must be evaluated at.
        :return:
            **p**: A numpy.ndarray of shape (1, number_of_observations) corresponding to the polynomial approximation of the model.
        """
        N = len(self.coefficients)
        return np.dot(
            self.get_poly(stack_of_points).T, self.coefficients.reshape(N, 1))

    def get_polyfit_grad(self, stack_of_points, dim_index=None):
        """
        Evaluates the gradient of the polynomial approximation of a function (or model data) at prescribed points.

        :param Poly self:
            An instance of the Poly class.
        :param numpy.ndarray stack_of_points:
            An ndarray with shape (number_of_observations, dimensions) at which the polynomial fit approximation's
            gradient must be evaluated at.
        :return:
            **p**: A numpy.ndarray of shape (dimensions, number_of_observations) corresponding to the polynomial gradient approximation of the model.
        """
        N = len(self.coefficients)
        if stack_of_points.ndim == 1:
            no_of_points = 1
        else:
            no_of_points, _ = stack_of_points.shape
        H = self.get_poly_grad(stack_of_points, dim_index=dim_index)
        grads = np.zeros((self.dimensions, no_of_points))
        if self.dimensions == 1:
            return np.dot(self.coefficients.reshape(N, ), H)
        for i in range(0, self.dimensions):
            grads[i, :] = np.dot(self.coefficients.reshape(N, ), H[i])
        return grads

    def get_polyfit_hess(self, stack_of_points):
        """
        Evaluates the hessian of the polynomial approximation of a function (or model data) at prescribed points.

        :param Poly self:
            An instance of the Poly class.
        :param numpy.ndarray stack_of_points:
            An ndarray with shape (number_of_observations, dimensions) at which the polynomial fit approximation's
            Hessian must be evaluated at.
        :return:
            **h**: A numpy.ndarray of shape (dimensions, dimensions, number_of_observations) corresponding to the polynomial Hessian approximation of the model.
        """
        if stack_of_points.ndim == 1:
            no_of_points = 1
        else:
            no_of_points, _ = stack_of_points.shape
        H = self.get_poly_hess(stack_of_points)
        if self.dimensions == 1:
            return np.dot(self.coefficients.T, H)
        hess = np.zeros((self.dimensions, self.dimensions, no_of_points))
        for i in range(0, self.dimensions):
            for j in range(0, self.dimensions):
                hess[i, j, :] = np.dot(self.coefficients.T,
                                       H[i * self.dimensions + j])
        return hess

    def get_polyfit_function(self):
        """
        Returns a callable polynomial approximation of a function (or model data).

        :param Poly self:
            An instance of the Poly class.
        :return:
            A callable function.
        """
        N = len(self.coefficients)
        return lambda x: np.dot(
            self.get_poly(x).T, self.coefficients.reshape(N, 1))

    def get_polyfit_grad_function(self):
        """
        Returns a callable for the gradients of the polynomial approximation of a function (or model data).

        :param Poly self:
            An instance of the Poly class.
        :return:
            A callable function.
        """
        return lambda x: self.get_polyfit_grad(x)

    def get_polyfit_hess_function(self):
        """
        Returns a callable for the hessian of the polynomial approximation of a function (or model data).

        :param Poly self:
            An instance of the Poly class.
        :return:
            A callable function.
        """
        return lambda x: self.get_polyfit_hess(x)

    def get_poly(self, stack_of_points, custom_multi_index=None):
        """
        Evaluates the value of each polynomial basis function at a set of points.

        :param Poly self:
            An instance of the Poly class.
        :param numpy.ndarray stack_of_points:
            An ndarray with shape (number of observations, dimensions) at which the polynomial must be evaluated.

        :return:
            **polynomial**: A numpy.ndarray of shape (cardinality, number_of_observations) corresponding to the polynomial basis function evaluations
            at the stack_of_points.
        """
        if custom_multi_index is None:
            basis = self.basis.elements
        else:
            basis = custom_multi_index
        basis_entries, dimensions = basis.shape

        if stack_of_points.ndim == 1:
            no_of_points = 1
        else:
            no_of_points, _ = stack_of_points.shape
        p = {}

        # Save time by returning if univariate!
        if dimensions == 1:
            poly, _, _ = self.parameters[0]._get_orthogonal_polynomial(
                stack_of_points, int(np.max(basis)))
            return poly
        else:
            for i in range(0, dimensions):
                if len(stack_of_points.shape) == 1:
                    stack_of_points = np.array([stack_of_points])
                p[i], _, _ = self.parameters[i]._get_orthogonal_polynomial(
                    stack_of_points[:, i], int(np.max(basis[:, i])))

        # One loop for polynomials
        polynomial = np.ones((basis_entries, no_of_points))
        for k in range(dimensions):
            basis_entries_this_dim = basis[:, k].astype(int)
            polynomial *= p[k][basis_entries_this_dim]
        return polynomial

    def get_poly_grad(self, stack_of_points, dim_index=None):
        """
        Evaluates the gradient for each of the polynomial basis functions at a set of points,
        with respect to each input variable.

        :param Poly self:
            An instance of the Poly class.
        :param numpy.ndarray stack_of_points:
            An ndarray with shape (number_of_observations, dimensions) at which the gradient must be evaluated.

        :return:
            **Gradients**: A list with d elements, where d corresponds to the dimension of the problem. Each element is a numpy.ndarray of shape
            (cardinality, number_of_observations) corresponding to the gradient polynomial evaluations at the stack_of_points.
        """
        # "Unpack" parameters from "self"
        basis = self.basis.elements
        basis_entries, dimensions = basis.shape
        if len(stack_of_points.shape) == 1:
            if dimensions == 1:
                # a 1d array of inputs, and each input is 1d
                stack_of_points = np.reshape(stack_of_points,
                                             (len(stack_of_points), 1))
            else:
                # a 1d array representing 1 point, in multiple dimensions!
                stack_of_points = np.array([stack_of_points])
        no_of_points, _ = stack_of_points.shape
        p = {}
        dp = {}

        # Save time by returning if univariate!
        if dimensions == 1:
            _, dpoly, _ = self.parameters[0]._get_orthogonal_polynomial(
                stack_of_points, int(np.max(basis)))
            return dpoly
        else:
            for i in range(0, dimensions):
                if len(stack_of_points.shape) == 1:
                    stack_of_points = np.array([stack_of_points])
                p[i], dp[i], _ = self.parameters[i]._get_orthogonal_polynomial(
                    stack_of_points[:, i], int(np.max(basis[:, i])))

        # One loop for polynomials
        R = []
        if dim_index is None:
            dim_index = range(dimensions)
        for v in range(dimensions):
            if not (v in dim_index):
                R.append(np.zeros((basis_entries, no_of_points)))
            else:
                polynomialgradient = np.ones((basis_entries, no_of_points))
                for k in range(dimensions):
                    basis_entries_this_dim = basis[:, k].astype(int)
                    if k == v:
                        polynomialgradient *= dp[k][basis_entries_this_dim]
                    else:
                        polynomialgradient *= p[k][basis_entries_this_dim]
                R.append(polynomialgradient)
        return R

    def get_poly_hess(self, stack_of_points):
        """
        Evaluates the Hessian for each of the polynomial basis functions at a set of points,
        with respect to each input variable.

        :param Poly self:
            An instance of the Poly class.
        :param numpy.ndarray stack_of_points:
            An ndarray with shape (number_of_observations, dimensions) at which the Hessian must be evaluated.

        :return:
            **Hessian**: A list with d^2 elements, where d corresponds to the dimension of the model. Each element is a numpy.ndarray of shape
            (cardinality, number_of_observations) corresponding to the hessian polynomial evaluations at the stack_of_points.

        """
        # "Unpack" parameters from "self"
        basis = self.basis.elements
        basis_entries, dimensions = basis.shape
        if stack_of_points.ndim == 1:
            no_of_points = 1
        else:
            no_of_points, _ = stack_of_points.shape
        p = {}
        dp = {}
        d2p = {}

        # Save time by returning if univariate!
        if dimensions == 1:
            _, _, d2poly = self.parameters[0]._get_orthogonal_polynomial(
                stack_of_points, int(np.max(basis)))
            return d2poly
        else:
            for i in range(0, dimensions):
                if len(stack_of_points.shape) == 1:
                    stack_of_points = np.array([stack_of_points])
                p[i], dp[i], d2p[i] = self.parameters[
                    i]._get_orthogonal_polynomial(stack_of_points[:, i],
                                                  int(np.max(basis[:, i]) + 1))
        H = []
        for w in range(0, dimensions):
            gradDirection1 = w
            for v in range(0, dimensions):
                gradDirection2 = v
                polynomialhessian = np.zeros((basis_entries, no_of_points))
                for i in range(0, basis_entries):
                    temp = np.ones((1, no_of_points))
                    for k in range(0, dimensions):
                        if k == gradDirection1 == gradDirection2:
                            polynomialhessian[i, :] = d2p[k][int(
                                basis[i, k])] * temp
                        elif k == gradDirection1:
                            polynomialhessian[i, :] = dp[k][int(
                                basis[i, k])] * temp
                        elif k == gradDirection2:
                            polynomialhessian[i, :] = dp[k][int(
                                basis[i, k])] * temp
                        else:
                            polynomialhessian[i, :] = p[k][int(
                                basis[i, k])] * temp
                        temp = polynomialhessian[i, :]
                H.append(polynomialhessian)

        return H