Beispiel #1
0
def test_ensemble_evaluator(tmpdir, source_root):
    shutil.copytree(
        os.path.join(source_root, "test-data", "local", "poly_example"),
        os.path.join(str(tmpdir), "poly_example"),
    )

    with tmpdir.as_cwd():
        parser = ArgumentParser(prog="test_main")
        parsed = ert_parser(
            parser,
            [
                ENSEMBLE_SMOOTHER_MODE,
                "--target-case",
                "poly_runpath_file",
                "--realizations",
                "1,2,4,8,16,32,64",
                "--enable-ensemble-evaluator",
                "poly_example/poly.ert",
            ],
        )
        FeatureToggling.update_from_args(parsed)

        assert FeatureToggling.is_enabled("ensemble-evaluator") is True

        run_cli(parsed)
        FeatureToggling.reset()
    def _runAndPostProcess(self, run_context, arguments, update_id=None):
        phase_msg = "Running iteration %d of %d simulation iterations..." % (
            run_context.get_iter(),
            self.phaseCount() - 1,
        )
        self.setPhase(run_context.get_iter(), phase_msg, indeterminate=False)

        self.setPhaseName("Pre processing...", indeterminate=True)
        self.ert().getEnkfSimulationRunner().createRunPath(run_context)
        EnkfSimulationRunner.runWorkflows(HookRuntime.PRE_SIMULATION,
                                          ert=ERT.ert)
        # create ensemble
        ensemble_id = self._post_ensemble_data(update_id=update_id)
        self.setPhaseName("Running forecast...", indeterminate=False)
        if FeatureToggling.is_enabled("ensemble-evaluator"):
            ee_config = arguments["ee_config"]
            num_successful_realizations = self.run_ensemble_evaluator(
                run_context, ee_config)
        else:
            self._job_queue = self._queue_config.create_job_queue()
            num_successful_realizations = (
                self.ert().getEnkfSimulationRunner().runSimpleStep(
                    self._job_queue, run_context))

        self.checkHaveSufficientRealizations(num_successful_realizations)

        self.setPhaseName("Post processing...", indeterminate=True)
        EnkfSimulationRunner.runWorkflows(HookRuntime.POST_SIMULATION,
                                          ert=ERT.ert)
        self._post_ensemble_results(ensemble_id)
        return ensemble_id
    def _simulateAndPostProcess(self, run_context, arguments):
        iteration = run_context.get_iter( )

        phase_string = "Running simulation for iteration: %d" % iteration
        self.setPhaseName(phase_string, indeterminate=True)
        self.ert().getEnkfSimulationRunner().createRunPath(run_context)

        phase_string = "Pre processing for iteration: %d" % iteration
        self.setPhaseName(phase_string)
        EnkfSimulationRunner.runWorkflows(HookRuntime.PRE_SIMULATION, ert=ERT.ert)

        phase_string = "Running forecast for iteration: %d" % iteration
        self.setPhaseName(phase_string, indeterminate=False)

        if FeatureToggling.is_enabled("ensemble-evaluator"):
            num_successful_realizations = self.run_ensemble_evaluator(run_context)
        else:
            self._job_queue = self._queue_config.create_job_queue()
            num_successful_realizations = self.ert().getEnkfSimulationRunner().runSimpleStep(self._job_queue, run_context)

        num_successful_realizations += arguments.get('prev_successful_realizations', 0)
        self.checkHaveSufficientRealizations(num_successful_realizations)

        phase_string = "Post processing for iteration: %d" % iteration
        self.setPhaseName(phase_string, indeterminate=True)
        EnkfSimulationRunner.runWorkflows(HookRuntime.POST_SIMULATION, ert=ERT.ert)
        return num_successful_realizations
Beispiel #4
0
def start_ert_server(mode: str):
    if mode in ("api", "vis") or not FeatureToggling.is_enabled("new-storage"):
        yield
        return

    with Storage.start_server():
        yield
    def runSimulations__(self, arguments, run_msg):

        run_context = self.create_context(arguments)

        self.setPhase(0, "Running simulations...", indeterminate=False)

        self.setPhaseName("Pre processing...", indeterminate=True)
        self.ert().getEnkfSimulationRunner().createRunPath(run_context)
        EnkfSimulationRunner.runWorkflows(HookRuntime.PRE_SIMULATION, ERT.ert)

        self.setPhaseName(run_msg, indeterminate=False)

        if FeatureToggling.is_enabled("ensemble-evaluator"):
            num_successful_realizations = self.run_ensemble_evaluator(
                run_context)
        else:
            self._job_queue = self._queue_config.create_job_queue()
            num_successful_realizations = (
                self.ert().getEnkfSimulationRunner().runEnsembleExperiment(
                    self._job_queue, run_context))

        num_successful_realizations += arguments.get(
            "prev_successful_realizations", 0)
        self.checkHaveSufficientRealizations(num_successful_realizations)

        self.setPhaseName("Post processing...", indeterminate=True)
        EnkfSimulationRunner.runWorkflows(HookRuntime.POST_SIMULATION, ERT.ert)
        self.setPhase(1, "Simulations completed.")  # done...

        dump_to_new_storage()

        return run_context
Beispiel #6
0
def run_cli(args):
    logging.basicConfig(level=logging.INFO, format="%(message)s")
    res_config = ResConfig(args.config)
    os.chdir(res_config.config_path)
    ert = EnKFMain(res_config, strict=True, verbose=args.verbose)
    notifier = ErtCliNotifier(ert, args.config)
    ERT.adapt(notifier)

    if args.mode == WORKFLOW_MODE:
        execute_workflow(args.name)
        return

    model, argument = create_model(args)
    # Test run does not have a current_case
    if "current_case" in args and args.current_case:
        ERT.enkf_facade.select_or_create_new_case(args.current_case)

    if (
        args.mode
        in [ENSEMBLE_SMOOTHER_MODE, ITERATIVE_ENSEMBLE_SMOOTHER_MODE, ES_MDA_MODE]
        and args.target_case == ERT.enkf_facade.get_current_case_name()
    ):
        msg = (
            "ERROR: Target file system and source file system can not be the same. "
            "They were both: {}.".format(args.target_case)
        )
        _clear_and_exit(msg)

    ee_config = None
    if FeatureToggling.is_enabled("ensemble-evaluator"):
        ee_config = EvaluatorServerConfig()
        argument.update({"ee_config": ee_config})

    thread = threading.Thread(
        name="ert_cli_simulation_thread",
        target=model.startSimulations,
        args=(argument,),
    )
    thread.start()

    tracker = create_tracker(model, detailed_interval=0, ee_config=ee_config)

    out = open(os.devnull, "w") if args.disable_monitoring else sys.stdout
    monitor = Monitor(out=out, color_always=args.color_always)

    try:
        monitor.monitor(tracker)
    except (SystemExit, KeyboardInterrupt):
        print("\nKilling simulations...")
        tracker.request_termination()

    if args.disable_monitoring:
        out.close()

    thread.join()

    if model.hasRunFailed():
        _clear_and_exit(1)  # the monitor has already reported the error message
Beispiel #7
0
    def __init__(self, config_file):
        QWidget.__init__(self)
        self._config_file = config_file
        self._ee_config = None
        if FeatureToggling.is_enabled("ensemble-evaluator"):
            self._ee_config = EvaluatorServerConfig()

        self.setObjectName("Simulation_panel")
        layout = QVBoxLayout()

        self._simulation_mode_combo = QComboBox()
        self._simulation_mode_combo.setObjectName("Simulation_mode")
        addHelpToWidget(self._simulation_mode_combo, "run/simulation_mode")

        self._simulation_mode_combo.currentIndexChanged.connect(
            self.toggleSimulationMode)

        simulation_mode_layout = QHBoxLayout()
        simulation_mode_layout.addSpacing(10)
        simulation_mode_layout.addWidget(QLabel("Simulation mode:"), 0,
                                         Qt.AlignVCenter)
        simulation_mode_layout.addWidget(self._simulation_mode_combo, 0,
                                         Qt.AlignVCenter)

        simulation_mode_layout.addSpacing(20)

        self.run_button = QToolButton()
        self.run_button.setObjectName("start_simulation")
        self.run_button.setIconSize(QSize(32, 32))
        self.run_button.setText("Start Simulation")
        self.run_button.setIcon(resourceIcon("ide/gear_in_play"))
        self.run_button.clicked.connect(self.runSimulation)
        self.run_button.setToolButtonStyle(Qt.ToolButtonTextBesideIcon)
        addHelpToWidget(self.run_button, "run/start_simulation")

        simulation_mode_layout.addWidget(self.run_button)
        simulation_mode_layout.addStretch(1)

        layout.addSpacing(5)
        layout.addLayout(simulation_mode_layout)
        layout.addSpacing(10)

        self._simulation_stack = QStackedWidget()
        self._simulation_stack.setLineWidth(1)
        self._simulation_stack.setFrameStyle(QFrame.StyledPanel)

        layout.addWidget(self._simulation_stack)

        self._simulation_widgets = OrderedDict()
        """ :type: OrderedDict[BaseRunModel,SimulationConfigPanel]"""
        self.addSimulationConfigPanel(SingleTestRunPanel())
        self.addSimulationConfigPanel(EnsembleExperimentPanel())
        if ERT.ert.have_observations():
            self.addSimulationConfigPanel(EnsembleSmootherPanel())
            self.addSimulationConfigPanel(MultipleDataAssimilationPanel())
            self.addSimulationConfigPanel(IteratedEnsembleSmootherPanel())

        self.setLayout(layout)
Beispiel #8
0
def create_tracker(
    model,
    general_interval=5,
    detailed_interval=10,
    qtimer_cls=None,
    event_handler=None,
    num_realizations=None,
):
    """Creates a tracker tracking a @model. The provided model
    is updated in two tiers: @general_interval, @detailed_interval.
    Setting any interval to <=0 disables update.

    Should a @qtimer_cls be defined, the Qt event loop will be used for
    tracking. @event_handler must then be defined.

    If @num_realizations is defined, then the intervals are scaled
    according to some affine transformation such that it is tractable to
    do tracking.

    If @ee_host_port_tuple then the factory will produce something that can
    track an ensemble evaluator.
    """
    if num_realizations is not None:
        general_interval, detailed_interval = scale_intervals(num_realizations)

    ee_config = load_config()
    ee_monitor_connection_details = (
        (ee_config.get("host"), ee_config.get("port"))
        if FeatureToggling.is_enabled("ensemble-evaluator")
        else None
    )

    if qtimer_cls:
        if not event_handler:
            raise ValueError(
                "event_handler must be defined if" + "qtimer_cls is defined"
            )
        return QTimerTracker(
            model,
            qtimer_cls,
            general_interval,
            detailed_interval,
            event_handler,
            ee_monitor_connection_details,
        )
    else:
        return BlockingTracker(
            model,
            general_interval,
            detailed_interval,
            ee_monitor_connection_details,
        )
Beispiel #9
0
def start_ert_server():
    monitor = None
    if FeatureToggling.is_enabled("new-storage"):
        from ert_shared.storage.server_monitor import ServerMonitor

        monitor = ServerMonitor.get_instance()
        monitor.start()

    try:
        yield
    finally:
        if monitor is not None:
            monitor.shutdown()
Beispiel #10
0
    def _simulateAndPostProcess(self,
                                run_context,
                                arguments,
                                update_id: int = None):
        iteration = run_context.get_iter()

        phase_string = "Running simulation for iteration: %d" % iteration
        self.setPhaseName(phase_string, indeterminate=True)
        self.ert().getEnkfSimulationRunner().createRunPath(run_context)

        phase_string = "Pre processing for iteration: %d" % iteration
        self.setPhaseName(phase_string)
        EnkfSimulationRunner.runWorkflows(HookRuntime.PRE_SIMULATION,
                                          ert=ERT.ert)

        # Push ensemble, parameters, observations to new storage
        new_ensemble_id = post_ensemble_data(update_id=update_id,
                                             ensemble_size=self._ensemble_size)

        phase_string = "Running forecast for iteration: %d" % iteration
        self.setPhaseName(phase_string, indeterminate=False)

        if FeatureToggling.is_enabled("ensemble-evaluator"):
            ee_config = arguments["ee_config"]
            num_successful_realizations = self.run_ensemble_evaluator(
                run_context, ee_config)
        else:
            self._job_queue = self._queue_config.create_job_queue()
            num_successful_realizations = (
                self.ert().getEnkfSimulationRunner().runSimpleStep(
                    self._job_queue, run_context))

        # Push simulation results to storage
        post_ensemble_results(new_ensemble_id)

        num_successful_realizations += arguments.get(
            "prev_successful_realizations", 0)
        self.checkHaveSufficientRealizations(num_successful_realizations)

        phase_string = "Post processing for iteration: %d" % iteration
        self.setPhaseName(phase_string, indeterminate=True)
        EnkfSimulationRunner.runWorkflows(HookRuntime.POST_SIMULATION,
                                          ert=ERT.ert)

        return num_successful_realizations, new_ensemble_id
Beispiel #11
0
    def runSimulations__(self, arguments, run_msg):

        run_context = self.create_context(arguments)

        self.setPhase(0, "Running simulations...", indeterminate=False)

        self.setPhaseName("Pre processing...", indeterminate=True)
        self.ert().getEnkfSimulationRunner().createRunPath(run_context)

        # Push ensemble, parameters, observations to new storage
        ensemble_id = post_ensemble_data(ensemble_size=self._ensemble_size)
        EnkfSimulationRunner.runWorkflows(HookRuntime.PRE_SIMULATION, ERT.ert)

        self.setPhaseName(run_msg, indeterminate=False)

        if FeatureToggling.is_enabled("ensemble-evaluator"):
            ee_config = arguments["ee_config"]
            num_successful_realizations = self.run_ensemble_evaluator(
                run_context, ee_config
            )
        else:
            self._job_queue = self._queue_config.create_job_queue()
            num_successful_realizations = (
                self.ert()
                .getEnkfSimulationRunner()
                .runEnsembleExperiment(self._job_queue, run_context)
            )

        num_successful_realizations += arguments.get("prev_successful_realizations", 0)
        self.checkHaveSufficientRealizations(num_successful_realizations)

        self.setPhaseName("Post processing...", indeterminate=True)
        EnkfSimulationRunner.runWorkflows(HookRuntime.POST_SIMULATION, ERT.ert)
        self.setPhase(1, "Simulations completed.")  # done...

        # Push simulation results to storage
        post_ensemble_results(ensemble_id)

        return run_context
Beispiel #12
0
def create_tracker(
    model,
    general_interval=5,
    detailed_interval=10,
    num_realizations=None,
    ee_config=None,
):
    """Creates a tracker tracking a @model. The provided model
    is updated either purely event-driven, or in two tiers: @general_interval,
    @detailed_interval. Whether updates are continuous or periodic depends on
    invocation. In the case of periodic updates, setting an interval to <=0
    disables update.

    If @num_realizations is defined, then the intervals are scaled
    according to some affine transformation such that it is tractable to
    do tracking. This only applies to periodic updates.

    If @ee_host_port_tuple then the factory will produce something that can
    track an ensemble evaluator and emit events appropriately.
    """
    if num_realizations is not None:
        general_interval, detailed_interval = scale_intervals(num_realizations)

    if FeatureToggling.is_enabled("ensemble-evaluator"):
        return EvaluatorTracker(
            model,
            ee_config.host,
            ee_config.port,
            general_interval,
            detailed_interval,
            token=ee_config.token,
            cert=ee_config.cert,
        )
    return LegacyTracker(
        model,
        general_interval,
        detailed_interval,
    )
Beispiel #13
0
def run_gui(args):
    app = QApplication(
        [])  # Early so that QT is initialized before other imports
    app.setWindowIcon(resourceIcon("application/window_icon_cutout"))
    if FeatureToggling.is_enabled("prefect"):
        ert_conf_path = os.path.abspath(args.config)[:-3] + "ert"
        with open(ert_conf_path, "w") as f:
            f.write("""QUEUE_SYSTEM LOCAL
QUEUE_OPTION LOCAL MAX_RUNNING 50
RUNPATH out/real_%d/iter_%d
NUM_REALIZATIONS 100
MIN_REALIZATIONS 1
            """)
        res_config = ResConfig(ert_conf_path)
    else:
        res_config = ResConfig(args.config)
    os.chdir(res_config.config_path)
    ert = EnKFMain(res_config, strict=True, verbose=args.verbose)

    # window reference must be kept until app.exec returns
    window = _start_window(ert, args)

    return app.exec_()
Beispiel #14
0
def test_tracking(
    experiment_folder,
    cmd_line_arguments,
    num_successful,
    num_iters,
    tmpdir,
    source_root,
):
    shutil.copytree(
        os.path.join(source_root, "test-data", "local",
                     f"{experiment_folder}"),
        os.path.join(str(tmpdir), f"{experiment_folder}"),
    )

    config_lines = [
        "INSTALL_JOB poly_eval2 POLY_EVAL\n"
        "SIMULATION_JOB poly_eval2\n"
    ]

    with tmpdir.as_cwd():
        with open(f"{experiment_folder}/poly.ert", "a") as fh:
            fh.writelines(config_lines)

        parser = ArgumentParser(prog="test_main")
        parsed = ert_parser(
            parser,
            cmd_line_arguments,
        )
        FeatureToggling.update_from_args(parsed)

        res_config = ResConfig(parsed.config)
        os.chdir(res_config.config_path)
        ert = EnKFMain(res_config, strict=True, verbose=parsed.verbose)
        notifier = ErtCliNotifier(ert, parsed.config)
        ERT.adapt(notifier)

        model, argument = create_model(parsed)

        ee_config = None
        if FeatureToggling.is_enabled("ensemble-evaluator"):
            ee_config = EvaluatorServerConfig()
            argument.update({"ee_config": ee_config})

        thread = threading.Thread(
            name="ert_cli_simulation_thread",
            target=model.startSimulations,
            args=(argument, ),
        )
        thread.start()

        tracker = create_tracker(model,
                                 general_interval=1,
                                 detailed_interval=2,
                                 ee_config=ee_config)

        snapshots = {}

        for event in tracker.track():
            if isinstance(event, FullSnapshotEvent):
                snapshots[event.iteration] = event.snapshot
            if isinstance(event, SnapshotUpdateEvent):
                if event.partial_snapshot is not None:
                    snapshots[event.iteration].merge(
                        event.partial_snapshot.data())
            if isinstance(event, EndEvent):
                break

        assert tracker._progress() == 1.0

        assert len(snapshots) == num_iters
        for iter_, snapshot in snapshots.items():
            successful_reals = list(
                filter(
                    lambda item: item[1].status == REALIZATION_STATE_FINISHED,
                    snapshot.get_reals().items(),
                ))
            assert len(successful_reals) == num_successful
            for real_id, real in successful_reals:
                assert (real.status == REALIZATION_STATE_FINISHED
                        ), f"iter:{iter_} real:{real_id} was not finished"

                poly = real.steps["0"].jobs["0"]
                poly2 = real.steps["0"].jobs["1"]
                assert poly.name == "poly_eval"
                assert (poly.status == JOB_STATE_FINISHED
                        ), f"real {real_id}/{poly['name']} was not finished"
                assert poly2.name == "poly_eval2"
                assert (poly2.status == JOB_STATE_FINISHED
                        ), f"real {real_id}/{poly['name']} was not finished"
Beispiel #15
0
    def runSimulations(self, arguments):
        prior_context = self.create_context(arguments)

        self.checkMinimumActiveRealizations(prior_context)
        self.setPhase(0, "Running simulations...", indeterminate=False)

        # self.setAnalysisModule(arguments["analysis_module"])

        self.setPhaseName("Pre processing...", indeterminate=True)
        self.ert().getEnkfSimulationRunner().createRunPath(prior_context)

        # Push ensemble, parameters, observations to new storage
        ensemble_id = post_ensemble_data()

        EnkfSimulationRunner.runWorkflows(HookRuntime.PRE_SIMULATION,
                                          ert=ERT.ert)

        self.setPhaseName("Running forecast...", indeterminate=False)

        if FeatureToggling.is_enabled("ensemble-evaluator"):
            ee_config = arguments["ee_config"]
            num_successful_realizations = self.run_ensemble_evaluator(
                prior_context, ee_config)
        else:
            self._job_queue = self._queue_config.create_job_queue()
            num_successful_realizations = self.ert().getEnkfSimulationRunner(
            ).runSimpleStep(self._job_queue, prior_context)

        self.checkHaveSufficientRealizations(num_successful_realizations)

        self.setPhaseName("Post processing...", indeterminate=True)
        EnkfSimulationRunner.runWorkflows(HookRuntime.POST_SIMULATION,
                                          ert=ERT.ert)

        self.setPhaseName("Analyzing...")
        EnkfSimulationRunner.runWorkflows(HookRuntime.PRE_FIRST_UPDATE,
                                          ert=ERT.ert)
        EnkfSimulationRunner.runWorkflows(HookRuntime.PRE_UPDATE, ert=ERT.ert)
        es_update = self.ert().getESUpdate()
        success = es_update.smootherUpdate(prior_context)
        if not success:
            raise ErtRunError("Analysis of simulation failed!")
        EnkfSimulationRunner.runWorkflows(HookRuntime.POST_UPDATE, ert=ERT.ert)

        # Push simulation results to storage
        post_ensemble_results(ensemble_id)

        self.setPhase(1, "Running simulations...")
        self.ert().getEnkfFsManager().switchFileSystem(
            prior_context.get_target_fs())

        self.setPhaseName("Pre processing...")

        rerun_context = self.create_context(arguments,
                                            prior_context=prior_context)

        self.ert().getEnkfSimulationRunner().createRunPath(rerun_context)

        # Push ensemble, parameters, observations to new storage
        analysis_module_name = self.ert().analysisConfig().activeModuleName()
        ensemble_id = post_ensemble_data((ensemble_id, analysis_module_name))

        EnkfSimulationRunner.runWorkflows(HookRuntime.PRE_SIMULATION,
                                          ert=ERT.ert)

        self.setPhaseName("Running forecast...", indeterminate=False)

        if FeatureToggling.is_enabled("ensemble-evaluator"):
            ee_config = arguments["ee_config"]
            num_successful_realizations = self.run_ensemble_evaluator(
                rerun_context, ee_config)
        else:
            self._job_queue = self._queue_config.create_job_queue()
            num_successful_realizations = self.ert().getEnkfSimulationRunner(
            ).runSimpleStep(self._job_queue, rerun_context)

        self.checkHaveSufficientRealizations(num_successful_realizations)

        self.setPhaseName("Post processing...", indeterminate=True)
        EnkfSimulationRunner.runWorkflows(HookRuntime.POST_SIMULATION,
                                          ert=ERT.ert)

        self.setPhase(2, "Simulations completed.")

        # Push simulation results to storage
        post_ensemble_results(ensemble_id)

        return prior_context
Beispiel #16
0
def test_tracking(
    experiment_folder,
    cmd_line_arguments,
    num_successful,
    num_iters,
    assert_present_in_snapshot,
    tmpdir,
    source_root,
):
    shutil.copytree(
        os.path.join(source_root, "test-data", "local",
                     f"{experiment_folder}"),
        os.path.join(str(tmpdir), f"{experiment_folder}"),
    )

    config_lines = [
        "INSTALL_JOB poly_eval2 POLY_EVAL\n"
        "SIMULATION_JOB poly_eval2\n"
    ]

    with tmpdir.as_cwd():
        with open(f"{experiment_folder}/poly.ert", "a") as fh:
            fh.writelines(config_lines)

        parser = ArgumentParser(prog="test_main")
        parsed = ert_parser(
            parser,
            cmd_line_arguments,
        )
        FeatureToggling.update_from_args(parsed)

        res_config = ResConfig(parsed.config)
        os.chdir(res_config.config_path)
        ert = EnKFMain(res_config, strict=True, verbose=parsed.verbose)
        notifier = ErtCliNotifier(ert, parsed.config)
        ERT.adapt(notifier)

        model, argument = create_model(parsed)

        ee_config = None
        if FeatureToggling.is_enabled("ensemble-evaluator"):
            ee_config = EvaluatorServerConfig()
            argument.update({"ee_config": ee_config})

        thread = threading.Thread(
            name="ert_cli_simulation_thread",
            target=model.start_simulations_thread,
            args=(argument, ),
        )
        thread.start()

        tracker = create_tracker(model,
                                 general_interval=1,
                                 detailed_interval=2,
                                 ee_config=ee_config)

        snapshots = {}

        for event in tracker.track():
            if isinstance(event, FullSnapshotEvent):
                snapshots[event.iteration] = event.snapshot
            if isinstance(event, SnapshotUpdateEvent):
                if event.partial_snapshot is not None:
                    snapshots[event.iteration].merge(
                        event.partial_snapshot.data())
            if isinstance(event, EndEvent):
                pass

        assert tracker._progress() == 1.0

        assert len(snapshots) == num_iters
        for iter_, snapshot in snapshots.items():
            successful_reals = list(
                filter(
                    lambda item: item[1].status == state.
                    REALIZATION_STATE_FINISHED,
                    snapshot.get_reals().items(),
                ))
            assert len(successful_reals) == num_successful

        for (
                iter_expression,
                snapshot_expression,
                expected,
        ) in assert_present_in_snapshot:
            for i, snapshot in snapshots.items():
                if re.match(iter_expression, str(i)):
                    check_expression(
                        snapshot.to_dict(),
                        snapshot_expression,
                        expected,
                        f"Snapshot {i} did not match:\n",
                    )
        thread.join()
Beispiel #17
0
 def killAllSimulations(self) -> None:
     if FeatureToggling.is_enabled("ensemble-evaluator"):
         raise NotImplementedError(
             "the ensemble evaluator does not implement killAllSimulations")
     self._job_queue.kill_all_jobs()
Beispiel #18
0
def run_cli(args):
    res_config = ResConfig(args.config)

    # Create logger inside function to make sure all handlers have been added to the root-logger.
    logger = logging.getLogger(__name__)
    logger.info(
        "Logging forward model jobs",
        extra={
            "workflow_jobs":
            str(res_config.model_config.getForwardModel().joblist())
        },
    )

    os.chdir(res_config.config_path)
    ert = EnKFMain(res_config, strict=True, verbose=args.verbose)
    notifier = ErtCliNotifier(ert, args.config)
    with ERT.adapt(notifier):

        if args.mode == WORKFLOW_MODE:
            execute_workflow(args.name)
            return

        model, argument = create_model(args)
        # Test run does not have a current_case
        if "current_case" in args and args.current_case:
            ERT.enkf_facade.select_or_create_new_case(args.current_case)

        if (args.mode in [
                ENSEMBLE_SMOOTHER_MODE, ITERATIVE_ENSEMBLE_SMOOTHER_MODE,
                ES_MDA_MODE
        ] and args.target_case == ERT.enkf_facade.get_current_case_name()):
            msg = (
                "ERROR: Target file system and source file system can not be the same. "
                "They were both: {}.".format(args.target_case))
            raise ErtCliError(msg)

        ee_config = None
        if FeatureToggling.is_enabled("ensemble-evaluator"):
            ee_config = EvaluatorServerConfig(
                custom_port_range=args.port_range)
            argument.update({"ee_config": ee_config})

        thread = threading.Thread(
            name="ert_cli_simulation_thread",
            target=model.start_simulations_thread,
            args=(argument, ),
        )
        thread.start()

        tracker = create_tracker(model,
                                 detailed_interval=0,
                                 ee_config=ee_config)

        out = open(os.devnull, "w") if args.disable_monitoring else sys.stderr
        monitor = Monitor(out=out, color_always=args.color_always)

        try:
            monitor.monitor(tracker)
        except (SystemExit, KeyboardInterrupt):
            print("\nKilling simulations...")
            tracker.request_termination()

        if args.disable_monitoring:
            out.close()

        thread.join()

        if model.hasRunFailed():
            raise ErtCliError(model.getFailMessage())