Beispiel #1
0
 def build_preprocess_fn(
     cls, args: argparse.Namespace, train: bool
 ) -> Optional[Callable[[str, Dict[str, np.array]], Dict[str, np.ndarray]]]:
     assert check_argument_types()
     if args.use_preprocessor:
         if "st" in args.subtask_series:
             retval = MutliTokenizerCommonPreprocessor(
                 train=train,
                 token_type=[args.token_type, args.src_token_type],
                 token_list=[args.token_list, args.src_token_list],
                 bpemodel=[args.bpemodel, args.src_bpemodel],
                 non_linguistic_symbols=args.non_linguistic_symbols,
                 text_cleaner=args.cleaner,
                 g2p_type=args.g2p,
                 # NOTE(kamo): Check attribute existence for backward compatibility
                 rir_scp=args.rir_scp if hasattr(args, "rir_scp") else None,
                 rir_apply_prob=args.rir_apply_prob
                 if hasattr(args, "rir_apply_prob")
                 else 1.0,
                 noise_scp=args.noise_scp if hasattr(args, "noise_scp") else None,
                 noise_apply_prob=args.noise_apply_prob
                 if hasattr(args, "noise_apply_prob")
                 else 1.0,
                 noise_db_range=args.noise_db_range
                 if hasattr(args, "noise_db_range")
                 else "13_15",
                 short_noise_thres=args.short_noise_thres
                 if hasattr(args, "short_noise_thres")
                 else 0.5,
                 speech_volume_normalize=args.speech_volume_normalize
                 if hasattr(args, "speech_volume_normalize")
                 else None,
                 speech_name="speech",
                 text_name=["text", "src_text"],
             )
         elif "diar" in args.subtask_series:
             retval = CommonPreprocessor(train=train)
         else:
             retval = CommonPreprocessor_multi(
                 train=train,
                 token_type=args.token_type,
                 token_list=args.token_list,
                 bpemodel=args.bpemodel,
                 non_linguistic_symbols=args.non_linguistic_symbols,
                 text_name=["text"],
                 text_cleaner=args.cleaner,
                 g2p_type=args.g2p,
             )
     else:
         retval = None
     assert check_return_type(retval)
     return retval
Beispiel #2
0
 def build_preprocess_fn(
     cls, args: argparse.Namespace, train: bool
 ) -> Optional[Callable[[str, Dict[str, np.array]], Dict[str, np.ndarray]]]:
     assert check_argument_types()
     # TODO(Jing): ask Kamo if it ok to support several args,
     # like text_name = 'text_ref1' and 'text_ref2'
     if args.use_preprocessor:
         retval = CommonPreprocessor_multi(
             train=train,
             token_type=args.token_type,
             token_list=args.token_list,
             bpemodel=args.bpemodel,
             non_linguistic_symbols=args.non_linguistic_symbols,
             text_name=["text_ref1", "text_ref2"],
             text_cleaner=args.cleaner,
             g2p_type=args.g2p,
         )
     else:
         retval = None
     assert check_return_type(retval)
     return retval