Beispiel #1
0
    def test_msd_global_temp(self):
        """Tests diffusion via MSD for global gamma and temperature"""

        gamma = 9.4
        kT = 0.37
        dt = 0.5

        system = self.system
        system.part.clear()
        p = system.part.add(pos=(0, 0, 0), id=0)
        system.time_step = dt
        system.thermostat.set_brownian(kT=kT, gamma=gamma, seed=42)
        system.cell_system.skin = 0.4

        pos_obs = ParticlePositions(ids=(p.id, ))

        c_pos = Correlator(obs1=pos_obs,
                           tau_lin=16,
                           tau_max=100.,
                           delta_N=10,
                           corr_operation="square_distance_componentwise",
                           compress1="discard1")
        system.auto_update_accumulators.add(c_pos)

        system.integrator.run(500000)

        c_pos.finalize()

        # Check MSD
        msd = c_pos.result()
        system.auto_update_accumulators.clear()

        def expected_msd(x):
            return 2. * kT / gamma * x

        for i in range(2, 6):
            np.testing.assert_allclose(msd[i, 2:5],
                                       expected_msd(msd[i, 0]),
                                       rtol=0.02)
    def test_06__diffusion(self):
        """This tests rotational and translational diffusion coeff via Green-Kubo"""
        system = self.system
        system.part.clear()

        kT = 1.37
        dt = 0.1
        system.time_step = dt

        # Translational gamma. We cannot test per-component, if rotation is on,
        # because body and space frames become different.
        gamma = 3.1

        # Rotational gamma
        gamma_rot_i = 4.7
        gamma_rot_a = [4.2, 1, 1.2]

        # If we have langevin per particle:
        # per particle kT
        per_part_kT = 1.6
        # Translation
        per_part_gamma = 1.63
        # Rotational
        per_part_gamma_rot_i = 2.6
        per_part_gamma_rot_a = [2.4, 3.8, 1.1]

        # Particle with global thermostat params
        p_global = system.part.add(pos=(0, 0, 0))
        # Make sure, mass doesn't change diff coeff
        self.setup_diff_mass_rinertia(p_global)

        # particle specific gamma, kT, and both
        if espressomd.has_features("LANGEVIN_PER_PARTICLE"):
            p_gamma = system.part.add(pos=(0, 0, 0))
            self.setup_diff_mass_rinertia(p_gamma)
            if espressomd.has_features("PARTICLE_ANISOTROPY"):
                p_gamma.gamma = per_part_gamma, per_part_gamma, per_part_gamma
                if espressomd.has_features("ROTATION"):
                    p_gamma.gamma_rot = per_part_gamma_rot_a
            else:
                p_gamma.gamma = per_part_gamma
                if espressomd.has_features("ROTATION"):
                    p_gamma.gamma_rot = per_part_gamma_rot_i

            p_kT = system.part.add(pos=(0, 0, 0))
            self.setup_diff_mass_rinertia(p_kT)
            p_kT.temp = per_part_kT

            p_both = system.part.add(pos=(0, 0, 0))
            self.setup_diff_mass_rinertia(p_both)
            p_both.temp = per_part_kT
            if espressomd.has_features("PARTICLE_ANISOTROPY"):
                p_both.gamma = per_part_gamma, per_part_gamma, per_part_gamma
                if espressomd.has_features("ROTATION"):
                    p_both.gamma_rot = per_part_gamma_rot_a
            else:
                p_both.gamma = per_part_gamma
                if espressomd.has_features("ROTATION"):
                    p_both.gamma_rot = per_part_gamma_rot_i

        # Thermostat setup
        if espressomd.has_features("ROTATION"):
            if espressomd.has_features("PARTICLE_ANISOTROPY"):
                # particle anisotropy and rotation
                system.thermostat.set_langevin(kT=kT,
                                               gamma=gamma,
                                               gamma_rotation=gamma_rot_a,
                                               seed=41)
            else:
                # Rotation without particle anisotropy
                system.thermostat.set_langevin(kT=kT,
                                               gamma=gamma,
                                               gamma_rotation=gamma_rot_i,
                                               seed=41)
        else:
            # No rotation
            system.thermostat.set_langevin(kT=kT, gamma=gamma, seed=41)

        system.cell_system.skin = 0.4
        system.integrator.run(100)

        # Correlators
        vel_obs = {}
        omega_obs = {}
        corr_vel = {}
        corr_omega = {}
        all_particles = [p_global]
        if espressomd.has_features("LANGEVIN_PER_PARTICLE"):
            all_particles.append(p_gamma)
            all_particles.append(p_kT)
            all_particles.append(p_both)

        # linear vel
        vel_obs = ParticleVelocities(ids=system.part[:].id)
        corr_vel = Correlator(obs1=vel_obs,
                              tau_lin=10,
                              tau_max=1.4,
                              delta_N=2,
                              corr_operation="componentwise_product",
                              compress1="discard1")
        system.auto_update_accumulators.add(corr_vel)
        # angular vel
        if espressomd.has_features("ROTATION"):
            omega_obs = ParticleBodyAngularVelocities(ids=system.part[:].id)
            corr_omega = Correlator(obs1=omega_obs,
                                    tau_lin=10,
                                    tau_max=1.5,
                                    delta_N=2,
                                    corr_operation="componentwise_product",
                                    compress1="discard1")
            system.auto_update_accumulators.add(corr_omega)

        system.integrator.run(80000)

        system.auto_update_accumulators.remove(corr_vel)
        corr_vel.finalize()
        if espressomd.has_features("ROTATION"):
            system.auto_update_accumulators.remove(corr_omega)
            corr_omega.finalize()

        # Verify diffusion
        # Translation
        # Cast gammas to vector, to make checks independent of
        # PARTICLE_ANISOTROPY
        gamma = np.ones(3) * gamma
        per_part_gamma = np.ones(3) * per_part_gamma
        self.verify_diffusion(p_global, corr_vel, kT, gamma)
        if espressomd.has_features("LANGEVIN_PER_PARTICLE"):
            self.verify_diffusion(p_gamma, corr_vel, kT, per_part_gamma)
            self.verify_diffusion(p_kT, corr_vel, per_part_kT, gamma)
            self.verify_diffusion(p_both, corr_vel, per_part_kT,
                                  per_part_gamma)

        # Rotation
        if espressomd.has_features("ROTATION"):
            # Decide on effective gamma rotation, since for rotation it is
            # direction dependent
            eff_gamma_rot = None
            per_part_eff_gamma_rot = None
            if espressomd.has_features("PARTICLE_ANISOTROPY"):
                eff_gamma_rot = gamma_rot_a
                eff_per_part_gamma_rot = per_part_gamma_rot_a
            else:
                eff_gamma_rot = gamma_rot_i * np.ones(3)
                eff_per_part_gamma_rot = per_part_gamma_rot_i * np.ones(3)

            self.verify_diffusion(p_global, corr_omega, kT, eff_gamma_rot)
            if espressomd.has_features("LANGEVIN_PER_PARTICLE"):
                self.verify_diffusion(p_gamma, corr_omega, kT,
                                      eff_per_part_gamma_rot)
                self.verify_diffusion(p_kT, corr_omega, per_part_kT,
                                      eff_gamma_rot)
                self.verify_diffusion(p_both, corr_omega, per_part_kT,
                                      eff_per_part_gamma_rot)
system.set_random_state_PRNG()
#system.seed = system.cell_system.get_state()['n_nodes'] * [1234]
np.random.seed(seed=system.seed)

p = system.part.add(pos=(0, 0, 0), id=0)
system.time_step = dt
system.thermostat.set_langevin(kT=kT, gamma=gamma, seed=42)
system.cell_system.skin = 0.4
system.integrator.run(1000)

pos_obs = ParticlePositions(ids=(0, ))
vel_obs = ParticleVelocities(ids=(0, ))

c_pos = Correlator(obs1=pos_obs,
                   tau_lin=16,
                   tau_max=100.,
                   delta_N=10,
                   corr_operation="square_distance_componentwise",
                   compress1="discard1")
c_vel = Correlator(obs1=vel_obs,
                   tau_lin=16,
                   tau_max=20.,
                   delta_N=1,
                   corr_operation="scalar_product",
                   compress1="discard1")
system.auto_update_accumulators.add(c_pos)
system.auto_update_accumulators.add(c_vel)

system.integrator.run(1000000)

c_pos.finalize()
c_vel.finalize()
Beispiel #4
0
    # Place a single active particle that can rotate in all 3 dimensions.
    # Set mass and rotational inertia to separate the timescales for
    # translational and rotational diffusion.
    system.part.add(pos=[5.0, 5.0, 5.0],
                    swimming={'v_swim': vel},
                    mass=0.1,
                    rotation=3 * [True],
                    rinertia=3 * [1.])

    # Initialize the mean squared displacement (MSD) correlator
    tmax = system.time_step * SAMP_STEPS

    pos_id = ParticlePositions(ids=[0])
    msd = Correlator(obs1=pos_id,
                     corr_operation="square_distance_componentwise",
                     delta_N=1,
                     tau_max=tmax,
                     tau_lin=16)
    system.auto_update_accumulators.add(msd)

    # Initialize the velocity auto-correlation function (VACF) correlator
    vel_id = ParticleVelocities(ids=[0])
    vacf = Correlator(obs1=vel_id,
                      corr_operation="scalar_product",
                      delta_N=1,
                      tau_max=tmax,
                      tau_lin=16)
    system.auto_update_accumulators.add(vacf)

    # Initialize the angular velocity auto-correlation function (AVACF)
    # correlator
Beispiel #5
0
def calc(var):

    # AVB: Create an output directory for this to store the output files
    outdir = "./Noelle/r01.5kBT4Ads/1000=3.2"
    if not os.path.exists(outdir):
        os.makedirs(outdir)

    # Setup constant
    time_step = 0.01
    loops = 30
    step_per_loop = 100

    # AVB: the parameters (that I usually use)
    a = 0.05
    r0 = 2.0 * a
    kBT = 4.0e-6
    vwf_type = 0
    collagen_type = 1
    monomer_mass = 0.01

    box_l = 32.0
    #print("Shear velocity:")
    #shear_velocity = float(input())
    #vy = box_l*shear_velocity
    vy = var
    print(vy)
    v = [0, vy, 0]

    # System setup

    system = 0

    system = System(box_l=[box_l, box_l, box_l])
    system.set_random_state_PRNG()
    np.random.seed(seed=system.seed)
    system.cell_system.skin = 0.4

    mpc = 20  # The number of monomers has been set to be 20 as default
    # Change this value for further simulations

    # Fene interaction
    fene = interactions.FeneBond(k=0.04, d_r_max=0.3)
    system.bonded_inter.add(fene)

    # Setup polymer of part_id 0 with fene bond
    # AVB: Notice the mode, max_tries and shield parameters for pruned self-avoiding random walk algorithm
    polymer.create_polymer(N_P=1,
                           MPC=mpc,
                           bond=fene,
                           bond_length=r0,
                           start_pos=[29.8, 16.0, 16.0],
                           mode=2,
                           max_tries=100,
                           shield=0.6 * r0)

    # AVB: setting the type of particles and changing mass of each monomer to 0.01
    system.part[:].type = vwf_type
    system.part[:].mass = monomer_mass

    # AVB: I suggest to add Lennard-Jones interaction between the monomers
    # AVB: to reproduce hydrophobicity
    # AVB: parameters for the potential (amplitude and cut-off redius)
    amplVwfVwf = 4.0 * kBT  # sometimes we change this to 2.0*kBT
    rcutVwfVwf = 1.5 * r0
    # AVB: the potential
    system.non_bonded_inter[vwf_type, vwf_type].lennard_jones.set_params(
        epsilon=amplVwfVwf,
        sigma=r0 / 1.122,
        shift="auto",
        cutoff=rcutVwfVwf,
        min=r0 * 0.6)

    print("Warming up the polymer chain.")
    ## For longer chains (>100) an extensive
    ## warmup is neccessary ...
    system.time_step = 0.002
    system.thermostat.set_langevin(kT=4.0e-6, gamma=1.0)
    # AVB: Here the Langevin thermostat is needed, because we have not yet initialized the LB-fluid.
    # AVB: And somehow it is necessary so that the polymer adopts the equilibrium conformation of the globule.
    # AVB: you may skip this step

    for i in range(100):
        system.force_cap = float(i) + 1
        system.integrator.run(100)

    print("Warmup finished.")
    system.force_cap = 0
    system.integrator.run(100)
    system.time_step = time_step
    system.integrator.run(500)

    # AVB: the following command turns the Langevin thermostat on in line 49
    system.thermostat.turn_off()

    # AVB: This command sets the velocities of all particles to zero
    system.part[:].v = [0, 0, 0]

    # AVB: The density was too small here. I have set 1.0 for now.
    # AVB: It would be necessary to recalculate, but the density of the liquid should not affect the movements of the polymer (this is how our physical model works).
    lbf = espressomd.lb.LBFluid(agrid=1,
                                dens=1.0,
                                visc=1.0e2,
                                tau=time_step,
                                fric=0.01)
    system.actors.add(lbf)
    system.thermostat.set_lb(kT=4.0e-6)

    # Setup boundaries
    walls = [lbboundaries.LBBoundary() for k in range(2)]
    walls[0].set_params(shape=shapes.Wall(normal=[1, 0, 0], dist=1.5),
                        velocity=v)
    walls[1].set_params(shape=shapes.Wall(normal=[-1, 0, 0], dist=-30.5))

    for wall in walls:
        system.lbboundaries.add(wall)

    print("Warming up the system with LB fluid.")
    system.integrator.run(5000)
    print("LB fluid warming finished.")
    # AVB: after this you should have a completely collapsed polymer globule
    # AVB: If you want to watch the process of globule formation in Paraview, just change 5000 to 0 in line 100

    N = 25
    x_coord = np.array([30] * N)
    y_coord = np.arange(14, 24, 5 / N)
    z_coord = np.arange(14, 24, 5 / N)
    for i in range(N):
        for j in range(N):
            system.part.add(id=i * N + j + 100,
                            pos=np.array([x_coord[i], y_coord[j], z_coord[i]]),
                            v=np.array([0, 0, 0]),
                            type=i * N + j + 100)

    all_collagen = range(100, (N - 1) * N + (N - 1) + 100)
    system.comfixed.types = all_collagen

    for i in range(100, (N - 1) * N + (N - 1) + 100):
        system.non_bonded_inter[vwf_type,
                                i].lennard_jones.set_params(epsilon=amplVwfVwf,
                                                            sigma=r0 / 1.122,
                                                            shift="auto",
                                                            cutoff=rcutVwfVwf,
                                                            min=r0 * 0.6)

    # configure correlators
    com_pos = ComPosition(ids=(0, ))
    c = Correlator(obs1=com_pos,
                   tau_lin=16,
                   tau_max=loops * step_per_loop,
                   delta_N=1,
                   corr_operation="square_distance_componentwise",
                   compress1="discard1")
    system.auto_update_accumulators.add(c)

    print("Sampling started.")
    print("lenth after warmup")
    print(
        system.analysis.calc_re(chain_start=0,
                                number_of_chains=1,
                                chain_length=mpc - 1)[0])

    lengths = []

    ylengths = []

    for i in range(loops):
        system.integrator.run(step_per_loop)
        system.analysis.append()
        lengths.append(
            system.analysis.calc_re(chain_start=0,
                                    number_of_chains=1,
                                    chain_length=mpc - 1)[0])
        lbf.print_vtk_velocity(outdir + "/" + str(vy) + "%04i.vtk" % i)
        system.part.writevtk(outdir + "/" + str(vy) + "vwf_all%04i.vtk" % i,
                             types=all_collagen)
        system.part.writevtk(outdir + "/" + str(vy) + "vwf_poly%04i.vtk" % i,
                             types=[0])
        cor = list(system.part[:].pos)
        y = []
        for l in cor:
            y.append(l[1])
        ylengths.append(max(y) - min(y))

        sys.stdout.write("\rSampling: %05i" % i)
        sys.stdout.flush()

    walls[0].set_params(shape=shapes.Wall(normal=[1, 0, 0], dist=1.5))
    walls[1].set_params(shape=shapes.Wall(normal=[-1, 0, 0], dist=-30.5))

    for i in range(100):
        system.integrator.run(step_per_loop)
        lengths.append(
            system.analysis.calc_re(chain_start=0,
                                    number_of_chains=1,
                                    chain_length=mpc - 1)[0])

    system.part.writevtk(outdir + "/" + str(vy) +
                         "vwf_all[r0=2,kBT=4]intheEND.vtk")

    with open(outdir + "/lengths" + str(vy) + ".dat", "a") as datafile:
        datafile.write("\n".join(map(str, lengths)))

    with open(outdir + "/lengthsY" + str(vy) + ".dat", "a") as datafile:
        datafile.write("\n".join(map(str, ylengths)))

    mean_vy = [(vy * 10000) / 32, sum(ylengths) / len(ylengths)]

    print("mean_vy")
    print(mean_vy)

    with open(outdir + "/mean_vy" + "2kBT_2r0" + ".dat", "a") as datafile:
        datafile.write(" ".join(map(str, mean_vy)))

    c.finalize()
    corrdata = c.result()
    corr = zeros((corrdata.shape[0], 2))
    corr[:, 0] = corrdata[:, 0]
    corr[:, 1] = (corrdata[:, 2] + corrdata[:, 3] + corrdata[:, 4]) / 3

    savetxt(outdir + "/msd_nom" + str(mpc) + ".dat", corr)

    with open(outdir + "/rh_out.dat", "a") as datafile:
        rh = system.analysis.calc_rh(chain_start=0,
                                     number_of_chains=1,
                                     chain_length=mpc - 1)
        datafile.write(str(mpc) + "    " + str(rh[0]) + "\n")
    system.thermostat.set_langevin(kT=1.0, gamma=1.0, seed=42)

    # Place a single active particle (that can rotate freely! rotation=[1,1,1])

    system.part.add(pos=[5.0, 5.0, 5.0], swimming={
                    'v_swim': vel}, rotation=[1, 1, 1])

    # Initialize the mean squared displacement (MSD) correlator

    tmax = tstep * sampsteps

    pos_id = ParticlePositions(ids=[0])
    msd = Correlator(obs1=pos_id,
                     corr_operation="square_distance_componentwise",
                     delta_N=1,
                     tau_max=tmax,
                     tau_lin=16)
    system.auto_update_accumulators.add(msd)

## Exercise 3 ##
# Construct the auto-accumulators for the VACF and AVACF,
# using the example of the MSD

    # Initialize the velocity auto-correlation function (VACF) correlator

    ...

    # Initialize the angular velocity auto-correlation function (AVACF)
    # correlator
Beispiel #7
0
    # Place a single active particle that can rotate in all 3 dimensions.
    # Set mass and rotational inertia to separate the timescales for
    # translational and rotational diffusion.
    system.part.add(pos=[5.0, 5.0, 5.0],
                    swimming={'v_swim': vel},
                    mass=0.1,
                    rotation=3 * [True],
                    rinertia=3 * [1.])

    # Initialize the mean squared displacement (MSD) correlator
    tmax = system.time_step * SAMP_STEPS

    pos_id = ParticlePositions(ids=[0])
    msd = Correlator(obs1=pos_id,
                     corr_operation="square_distance_componentwise",
                     delta_N=1,
                     tau_max=tmax,
                     tau_lin=16)
    system.auto_update_accumulators.add(msd)

    # Initialize the velocity auto-correlation function (VACF) correlator
    vel_id = ParticleVelocities(ids=[0])
    vacf = Correlator(obs1=vel_id,
                      corr_operation="scalar_product",
                      delta_N=1,
                      tau_max=tmax,
                      tau_lin=16)
    system.auto_update_accumulators.add(vacf)

    # Initialize the angular velocity auto-correlation function (AVACF)
    # correlator
Beispiel #8
0
system.non_bonded_inter[0, 0].hat.set_params(F_max=F_max, cutoff=r_cut)

# Warm up and equilibration
system.integrator.run(1000000)

# Reset COM movement
g = GalileiTransform()
g.galilei_transform()

# Set up of correlators to obtain stress autocorrelation functions
dso = espressomd.observables.DPDStress()
plain_old_stress = espressomd.observables.StressTensor()

c_dpd = Correlator(obs1=dso,
                   tau_lin=tau_lin,
                   tau_max=tau_max,
                   delta_N=1,
                   corr_operation="componentwise_product",
                   compress1="discard1")
c_old = Correlator(obs1=plain_old_stress,
                   tau_lin=tau_lin,
                   tau_max=tau_max,
                   delta_N=1,
                   corr_operation="componentwise_product",
                   compress1="discard1")

system.auto_update_accumulators.add(c_dpd)
system.auto_update_accumulators.add(c_old)

# Open txt-files to save non-correlated results
dpd_stress = open("dpd_stress.txt", "w")
old_stress = open("old_stress.txt", "w")
system = espressomd.System(box_l=[1.0, 1.0, 1.0])
np.random.seed(seed=42)

p = system.part.add(pos=(0, 0, 0), id=0)
system.time_step = dt
system.thermostat.set_langevin(kT=kT, gamma=gamma, seed=42)
system.cell_system.skin = 0.4
system.integrator.run(1000)

pos_obs = ParticlePositions(ids=(0, ))
vel_obs = ParticleVelocities(ids=(0, ))

c_pos = Correlator(obs1=pos_obs,
                   tau_lin=16,
                   tau_max=100.,
                   delta_N=10,
                   corr_operation="square_distance_componentwise",
                   compress1="discard1")
c_vel = Correlator(obs1=vel_obs,
                   tau_lin=16,
                   tau_max=20.,
                   delta_N=1,
                   corr_operation="scalar_product",
                   compress1="discard1")
system.auto_update_accumulators.add(c_pos)
system.auto_update_accumulators.add(c_vel)

system.integrator.run(1000000)

c_pos.finalize()
c_vel.finalize()
Beispiel #10
0
system.force_cap = 0

# Integration parameters
sampling_interval = 50
sampling_iterations = 200

from espressomd.observables import ParticlePositions
from espressomd.accumulators import Correlator

# Pass the ids of the particles to be tracked to the observable.
part_pos = ParticlePositions(ids=range(n_part))
# Initialize MSD correlator
msd_corr = Correlator(obs1=part_pos,
                      tau_lin=10,
                      delta_N=10,
                      tau_max=sampling_iterations * time_step,
                      corr_operation="square_distance_componentwise")
# Calculate results automatically during the integration
system.auto_update_accumulators.add(msd_corr)

# Set parameters for the radial distribution function
r_bins = 50
r_min = 0.0
r_max = system.box_l[0] / 2.0

avg_rdf00 = np.zeros((r_bins, ))
avg_rdf11 = np.zeros((r_bins, ))
avg_rdf01 = np.zeros((r_bins, ))

# Take measurements
Beispiel #11
0
                            tau=time_step,
                            fric=0.01)
system.actors.add(lbf)
system.thermostat.set_lb(kT=4.0e-6)

print("Warming up the system with LB fluid.")
system.integrator.run(5000)
print("LB fluid warming finished.")
# AVB: after this you should have a completely collapsed polymer globule
# AVB: If you want to watch the process of globule formation in Paraview, just change 5000 to 0 in line 100

# configure correlators
com_pos = ComPosition(ids=(0, ))
c = Correlator(obs1=com_pos,
               tau_lin=16,
               tau_max=loops * step_per_loop,
               delta_N=1,
               corr_operation="square_distance_componentwise",
               compress1="discard1")
system.auto_update_accumulators.add(c)

print("Sampling started.")
for i in range(loops):
    system.integrator.run(step_per_loop)
    system.analysis.append()
    lbf.print_vtk_velocity(outdir + "/fluid%04i.vtk" % i)
    system.part.writevtk(outdir + "/vwf_all%04i.vtk" % i)
    sys.stdout.write("\rSampling: %05i" % i)
    sys.stdout.flush()

c.finalize()
corrdata = c.result()