def landsat_files_check(image_ws): """Check if Landsat folder needs to be rebuilt from tar.gz Parameters ---------- image_ws : str Landsat image folder. Returns ------- True if there are sufficient files to run METRIC False if files are missing and image should be extracted from tar.gz """ try: image = et_image.Image(image_ws) except et_image.InvalidImage: return False if image.mtl_path is None: return False # Get list of digital number (DN) images from ORIGINAL_DATA folder dn_image_dict = et_common.landsat_band_image_dict(image.orig_data_ws, image.image_re) # Check if sets of rasters are present # Output from metric_model1 if (os.path.isfile(image.albedo_sur_raster) and os.path.isfile(image.ts_raster) and (os.path.isfile(image.ndvi_toa_raster) or os.path.isfile(image.ndvi_sur_raster)) and (os.path.isfile(image.lai_toa_raster) or os.path.isfile(image.lai_sur_raster))): return True # Output from prep_scene elif (os.path.isfile(image.refl_toa_raster) and os.path.isfile(image.ts_bt_raster)): return True # Output from prep_path_row elif (dn_image_dict and set(image.band_toa_dict.keys() + [image.thermal_band]) == set( dn_image_dict.keys())): return True else: return False
def main(image_ws, ini_path, bs=2048, stats_flag=False, overwrite_flag=False): """Prep a Landsat scene for METRIC Parameters ---------- image_ws : str Landsat scene folder that will be prepped. ini_path : str File path of the input parameters file. bs : int, optional Processing block size (the default is 2048). stats_flag : bool, optional If True, compute raster statistics (the default is True). overwrite_flag : bool, optional If True, overwrite existing files (the default is False). Returns ------- True is successful """ # Open config file config = dripy.open_ini(ini_path) # Get input parameters logging.debug(' Reading Input File') calc_refl_toa_flag = dripy.read_param( 'calc_refl_toa_flag', True, config, 'INPUTS') calc_refl_toa_qa_flag = dripy.read_param( 'calc_refl_toa_qa_flag', True, config, 'INPUTS') # calc_refl_sur_ledaps_flag = dripy.read_param( # 'calc_refl_sur_ledaps_flag', False, config, 'INPUTS') # calc_refl_sur_qa_flag = dripy.read_param( # 'calc_refl_sur_qa_flag', False, config, 'INPUTS') calc_ts_bt_flag = dripy.read_param( 'calc_ts_bt_flag', True, config, 'INPUTS') # Use QA band to set common area # Fmask cloud, shadow, & snow pixels will be removed from common area calc_fmask_common_flag = dripy.read_param( 'calc_fmask_common_flag', True, config, 'INPUTS') fmask_smooth_flag = dripy.read_param( 'fmask_smooth_flag', False, config, 'INPUTS') fmask_buffer_flag = dripy.read_param( 'fmask_buffer_flag', False, config, 'INPUTS') fmask_erode_flag = dripy.read_param( 'fmask_erode_flag', False, config, 'INPUTS') if fmask_smooth_flag: fmask_smooth_cells = int(dripy.read_param( 'fmask_smooth_cells', 1, config, 'INPUTS')) if fmask_smooth_cells == 0 and fmask_smooth_flag: fmask_smooth_flag = False if fmask_erode_flag: fmask_erode_cells = int(dripy.read_param( 'fmask_erode_cells', 1, config, 'INPUTS')) if fmask_erode_cells == 0 and fmask_erode_flag: fmask_erode_flag = False if fmask_buffer_flag: fmask_buffer_cells = int(dripy.read_param( 'fmask_buffer_cells', 1, config, 'INPUTS')) if fmask_buffer_cells == 0 and fmask_buffer_flag: fmask_buffer_flag = False # Remove edge (fringe) cells edge_smooth_flag = dripy.read_param( 'edge_smooth_flag', True, config, 'INPUTS') # Include hand made cloud masks cloud_mask_flag = dripy.read_param( 'cloud_mask_flag', False, config, 'INPUTS') cloud_mask_ws = "" if cloud_mask_flag: cloud_mask_ws = config.get('INPUTS', 'cloud_mask_ws') # Extract separate Fmask rasters calc_fmask_flag = dripy.read_param( 'calc_fmask_flag', True, config, 'INPUTS') calc_fmask_cloud_flag = dripy.read_param( 'calc_fmask_cloud_flag', True, config, 'INPUTS') calc_fmask_snow_flag = dripy.read_param( 'calc_fmask_snow_flag', True, config, 'INPUTS') calc_fmask_water_flag = dripy.read_param( 'calc_fmask_water_flag', True, config, 'INPUTS') # Keep Landsat DN, LEDAPS, and Fmask rasters keep_dn_flag = dripy.read_param( 'keep_dn_flag', True, config, 'INPUTS') # keep_sr_flag = dripy.read_param( # 'keep_sr_flag', True, config, 'INPUTS') # For this to work I would need to pass in the metric input file # calc_elev_flag = dripy.read_param( # 'calc_elev_flag', False, config, 'INPUTS') # calc_landuse_flag = dripy.read_param( # 'calc_landuse_flag', False, config, 'INPUTS') # calc_acca_cloud_flag = dripy.read_param( # 'calc_acca_cloud_flag', True, config, 'INPUTS') # calc_acca_snow_flag = dripy.read_param( # 'calc_acca_snow_flag', True, config, 'INPUTS') # calc_ledaps_dem_land_flag = dripy.read_param( # 'calc_ledaps_dem_land_flag', False, config, 'INPUTS') # calc_ledaps_veg_flag = dripy.read_param( # 'calc_ledaps_veg_flag', False, config, 'INPUTS') # calc_ledaps_snow_flag = dripy.read_param( # 'calc_ledaps_snow_flag', False, config, 'INPUTS') # calc_ledaps_land_flag = dripy.read_param( # 'calc_ledaps_land_flag', False, config, 'INPUTS') # calc_ledaps_cloud_flag = dripy.read_param( # 'calc_ledaps_cloud_flag', False, config, 'INPUTS') # Interpolate/clip/project hourly rasters for each Landsat scene # calc_metric_flag = dripy.read_param( # 'calc_metric_flag', False, config, 'INPUTS') calc_metric_ea_flag = dripy.read_param( 'calc_metric_ea_flag', False, config, 'INPUTS') calc_metric_wind_flag = dripy.read_param( 'calc_metric_wind_flag', False, config, 'INPUTS') calc_metric_etr_flag = dripy.read_param( 'calc_metric_etr_flag', False, config, 'INPUTS') calc_metric_tair_flag = dripy.read_param( 'calc_metric_tair_flag', False, config, 'INPUTS') # Interpolate/clip/project AWC and daily ETr/PPT rasters # to compute SWB Ke for each Landsat scene calc_swb_ke_flag = dripy.read_param( 'calc_swb_ke_flag', False, config, 'INPUTS') if cloud_mask_flag: spinup_days = dripy.read_param( 'swb_spinup_days', 30, config, 'INPUTS') min_spinup_days = dripy.read_param( 'swb_min_spinup_days', 5, config, 'INPUTS') # Round ea raster to N digits to save space rounding_digits = dripy.read_param( 'rounding_digits', 3, config, 'INPUTS') env = drigo.env image = et_image.Image(image_ws, env) np.seterr(invalid='ignore', divide='ignore') gdal.UseExceptions() # Input file paths dn_image_dict = et_common.landsat_band_image_dict( image.orig_data_ws, image.image_name_re) # # Open METRIC config file # if config_file: # logging.info( # log_f.format('METRIC INI File:', os.path.basename(config_file))) # config = configparser.ConfigParser() # try: # config.read(config_file) # except: # logging.error('\nERROR: Config file could not be read, ' + # 'is not an input file, or does not exist\n' + # 'ERROR: config_file = {}\n').format(config_file) # sys.exit() # # Overwrite # overwrite_flag = dripy.read_param('overwrite_flag', True, config) # # # Elevation and landuse parameters/flags from METRIC input file # calc_elev_flag = dripy.read_param('save_dem_raster_flag', True, config) # calc_landuse_flag = dripy.read_param( # 'save_landuse_raster_flag', True, config) # if calc_elev_flag: # elev_pr_path = config.get('INPUTS','dem_raster') # if calc_landuse_flag: # landuse_pr_path = config.get('INPUTS', 'landuse_raster') # else: # overwrite_flag = False # calc_elev_flag = False # calc_landuse_flag = False # # Elev raster must exist # if calc_elev_flag and not os.path.isfile(elev_pr_path): # logging.error('\nERROR: Elevation raster {} does not exist\n'.format( # elev_pr_path)) # return False # Landuse raster must exist # if calc_landuse_flag and not os.path.isfile(landuse_pr_path): # logging.error('\nERROR: Landuse raster {} does not exist\n'.format( # landuse_pr_path)) # return False # Removing ancillary files before checking for inputs if os.path.isdir(os.path.join(image.orig_data_ws, 'gap_mask')): shutil.rmtree(os.path.join(image.orig_data_ws, 'gap_mask')) for item in os.listdir(image.orig_data_ws): if (image.type == 'Landsat7' and (item.endswith('_B8.TIF') or item.endswith('_B6_VCID_2.TIF'))): os.remove(os.path.join(image.orig_data_ws, item)) elif (image.type == 'Landsat8' and (item.endswith('_B1.TIF') or item.endswith('_B8.TIF') or item.endswith('_B9.TIF') or item.endswith('_B11.TIF'))): os.remove(os.path.join(image.orig_data_ws, item)) elif (item.endswith('_VER.jpg') or item.endswith('_VER.txt') or item.endswith('_GCP.txt') or item == 'README.GTF'): os.remove(os.path.join(image.orig_data_ws, item)) # Check correction level (image must be L1T to process) if image.correction != 'L1TP': logging.debug(' Image is not L1TP corrected, skipping') return False # calc_fmask_common_flag = False # calc_refl_toa_flag = False # calc_ts_bt_flag = False # calc_metric_ea_flag = False # calc_metric_wind_flag = False # calc_metric_etr_flag = False # overwrite_flag = False # QA band must exist if calc_fmask_common_flag and image.qa_band not in dn_image_dict.keys(): logging.warning( '\nQA band does not exist but calc_fmask_common_flag=True' '\n Setting calc_fmask_common_flag=False\n {}'.format( image.qa_band)) calc_fmask_common_flag = False if cloud_mask_flag and not os.path.isdir(cloud_mask_ws): logging.warning( '\ncloud_mask_ws is not a directory but cloud_mask_flag=True.' '\n Setting cloud_mask_flag=False\n {}'.format(cloud_mask_ws)) cloud_mask_flag = False # Check for Landsat TOA images if (calc_refl_toa_flag and (set(list(image.band_toa_dict.keys()) + [image.thermal_band, image.qa_band]) != set(dn_image_dict.keys()))): logging.warning( '\nMissing Landsat images but calc_refl_toa_flag=True' '\n Setting calc_refl_toa_flag=False') calc_refl_toa_flag = False # Check for Landsat brightness temperature image if calc_ts_bt_flag and image.thermal_band not in dn_image_dict.keys(): logging.warning( '\nThermal band image does not exist but calc_ts_bt_flag=True' '\n Setting calc_ts_bt_flag=False') calc_ts_bt_flag = False # DEADBEEF - Should the function return False if Ts doesn't exist? # return False # Check for METRIC hourly/daily input folders if calc_metric_ea_flag: metric_ea_input_ws = config.get('INPUTS', 'metric_ea_input_folder') if not os.path.isdir(metric_ea_input_ws): logging.warning( '\nHourly Ea folder does not exist but calc_metric_ea_flag=True' '\n Setting calc_metric_ea_flag=False\n {}'.format( metric_ea_input_ws)) calc_metric_ea_flag = False if calc_metric_wind_flag: metric_wind_input_ws = config.get('INPUTS', 'metric_wind_input_folder') if not os.path.isdir(metric_wind_input_ws): logging.warning( '\nHourly wind folder does not exist but calc_metric_wind_flag=True' '\n Setting calc_metric_wind_flag=False\n {}'.format( metric_wind_input_ws)) calc_metric_wind_flag = False if calc_metric_etr_flag: metric_etr_input_ws = config.get('INPUTS', 'metric_etr_input_folder') if not os.path.isdir(metric_etr_input_ws): logging.warning( '\nHourly ETr folder does not exist but calc_metric_etr_flag=True' '\n Setting calc_metric_etr_flag=False\n {}'.format( metric_etr_input_ws)) calc_metric_etr_flag = False if calc_metric_tair_flag: metric_tair_input_ws = config.get('INPUTS', 'metric_tair_input_folder') if not os.path.isdir(metric_tair_input_ws): logging.warning( '\nHourly Tair folder does not exist but calc_metric_tair_flag=True' '\n Setting calc_metric_tair_flag=False\n {}'.format( metric_tair_input_ws)) calc_metric_tair_flag = False if (calc_metric_ea_flag or calc_metric_wind_flag or calc_metric_etr_flag or calc_metric_tair_flag): metric_hourly_re = re.compile(config.get('INPUTS', 'metric_hourly_re')) metric_daily_re = re.compile(config.get('INPUTS', 'metric_daily_re')) if calc_swb_ke_flag: awc_input_path = config.get('INPUTS', 'awc_input_path') etr_input_ws = config.get('INPUTS', 'etr_input_folder') ppt_input_ws = config.get('INPUTS', 'ppt_input_folder') etr_input_re = re.compile(config.get('INPUTS', 'etr_input_re')) ppt_input_re = re.compile(config.get('INPUTS', 'ppt_input_re')) if not os.path.isfile(awc_input_path): logging.warning( '\nAWC raster does not exist but calc_swb_ke_flag=True' '\n Setting calc_swb_ke_flag=False\n {}'.format( awc_input_path)) calc_swb_ke_flag = False if not os.path.isdir(etr_input_ws): logging.warning( '\nDaily ETr folder does not exist but calc_swb_ke_flag=True' '\n Setting calc_swb_ke_flag=False\n {}'.format( etr_input_ws)) calc_swb_ke_flag = False if not os.path.isdir(ppt_input_ws): logging.warning( '\nDaily PPT folder does not exist but calc_swb_ke_flag=True' '\n Setting calc_swb_ke_flag=False\n {}'.format( ppt_input_ws)) calc_swb_ke_flag = False # Build folders for support rasters if ((calc_fmask_common_flag or calc_refl_toa_flag or # calc_refl_sur_ledaps_flag or calc_ts_bt_flag or calc_metric_ea_flag or calc_metric_wind_flag or calc_metric_etr_flag or calc_metric_tair_flag or calc_swb_ke_flag) and not os.path.isdir(image.support_ws)): os.makedirs(image.support_ws) if calc_refl_toa_flag and not os.path.isdir(image.refl_toa_ws): os.makedirs(image.refl_toa_ws) # if calc_refl_sur_ledaps_flag and not os.path.isdir(image.refl_sur_ws): # os.makedirs(image.refl_sur_ws) # DEADBEEF - This is being further down just for the Fmask images # # Apply overwrite flag # if overwrite_flag: # overwrite_list = [ # image.fmask_cloud_raster, image.fmask_snow_raster, # image.fmask_water_raster # # image.elev_raster, image.landuse_raster # # image.common_area_raster # ] # for overwrite_path in overwrite_list: # try: # dripy.remove_file(image.fmask_cloud_raster) # except: # pass # Use QA band to build common area rasters logging.info('\nCommon Area Raster') qa_ds = gdal.Open(dn_image_dict[image.qa_band], 0) common_geo = drigo.raster_ds_geo(qa_ds) common_extent = drigo.raster_ds_extent(qa_ds) common_proj = drigo.raster_ds_proj(qa_ds) common_osr = drigo.raster_ds_osr(qa_ds) # Initialize common_area as all non-fill QA values qa_array = drigo.raster_ds_to_array(qa_ds, return_nodata=False) common_array = qa_array != 1 common_rows, common_cols = common_array.shape del qa_ds # Erode and dilate to remove fringe on edge # Default is to not smooth, but user can force smoothing # This needs to be applied before Fmask if edge_smooth_flag and image.prefix in ['LT05', 'LE07']: struct = ndimage.generate_binary_structure(2, 2).astype(np.uint8) if image.prefix == 'LT05': cells = 8 elif image.prefix == 'LE07': cells = 2 else: cells = 0 common_array = ndimage.binary_dilation( ndimage.binary_erosion(common_array, struct, cells), struct, cells) # Try applying user defined cloud masks to common_area cloud_mask_path = os.path.join( cloud_mask_ws, image.folder_id + '_mask.shp') if cloud_mask_flag and os.path.isfile(cloud_mask_path): logging.info(' Applying cloud mask shapefile') feature_path = os.path.join( cloud_mask_ws, (image.folder_id + '_mask.shp')) logging.info(' {}'.format(feature_path)) cloud_mask_memory_ds = drigo.polygon_to_raster_ds( feature_path, nodata_value=0, burn_value=1, output_osr=common_osr, output_cs=30, output_extent=common_extent) cloud_array = drigo.raster_ds_to_array( cloud_mask_memory_ds, return_nodata=False) # DEADBEEF - If user sets a cloud mask, # it is probably better than Fmask # Eventually change "if" calc_fmask_common_flag: to "elif" common_array[cloud_array == 1] = 0 del cloud_mask_memory_ds, cloud_array # Remove Fmask cloud, shadow, and snow pixels from common_area if calc_fmask_common_flag: logging.info(' Applying Fmask to common area') fmask_array = et_numpy.bqa_fmask_func(qa_array) fmask_mask = (fmask_array >= 2) & (fmask_array <= 4) if fmask_smooth_flag: logging.debug( ' Smoothing (dilate/erode/erode/dilate) Fmask clouds, shadows,' ' and snow pixels by {} cells'.format(fmask_smooth_cells)) # ArcGIS smoothing procedure fmask_mask = ndimage.binary_dilation( fmask_mask, iterations=fmask_smooth_cells, structure=ndimage.generate_binary_structure(2, 2)) fmask_mask = ndimage.binary_erosion( fmask_mask, iterations=fmask_smooth_cells, structure=ndimage.generate_binary_structure(2, 2)) fmask_mask = ndimage.binary_erosion( fmask_mask, iterations=fmask_smooth_cells, structure=ndimage.generate_binary_structure(2, 2)) fmask_mask = ndimage.binary_dilation( fmask_mask, iterations=fmask_smooth_cells, structure=ndimage.generate_binary_structure(2, 2)) if fmask_erode_flag: logging.debug( ' Eroding Fmask clouds, shadows, and snow pixels by ' '{} cells'.format(fmask_erode_cells)) fmask_mask = ndimage.binary_erosion( fmask_mask, iterations=fmask_erode_cells, structure=ndimage.generate_binary_structure(2, 2)) if fmask_buffer_flag: logging.debug( ' Dilating (buffering) Fmask clouds, shadows, and snow pixels ' 'by {} cells'.format(fmask_buffer_cells)) fmask_mask = ndimage.binary_dilation( fmask_mask, iterations=fmask_buffer_cells, structure=ndimage.generate_binary_structure(2, 2)) # Reset common_array for buffered cells common_array[fmask_mask] = 0 del fmask_array, fmask_mask # Check that there are some cloud free pixels if not np.any(common_array): logging.error( ' ERROR: There are no cloud/snow free pixels, returning False') return False # Always overwrite common area raster # if not os.path.isfile(image.common_area_raster): drigo.array_to_raster( common_array, image.common_area_raster, output_geo=common_geo, output_proj=common_proj, stats_flag=stats_flag) # Print common geo/extent logging.debug(' Common geo: {}'.format(common_geo)) logging.debug(' Common extent: {}'.format(common_extent)) # Extract Fmask components as separate rasters if (calc_fmask_flag or calc_fmask_cloud_flag or calc_fmask_snow_flag or calc_fmask_water_flag): logging.info('\nFmask') fmask_array = et_numpy.bqa_fmask_func(qa_array) # Remove existing Fmask rasters if (calc_fmask_flag and overwrite_flag and os.path.isfile(image.fmask_output_raster)): logging.debug(' Overwriting: {}'.format( image.fmask_output_raster)) dripy.remove_file(image.fmask_output_raster) if (calc_fmask_cloud_flag and overwrite_flag and os.path.isfile(image.fmask_cloud_raster)): logging.debug(' Overwriting: {}'.format( image.fmask_cloud_raster)) dripy.remove_file(image.fmask_cloud_raster) if (calc_fmask_snow_flag and overwrite_flag and os.path.isfile(image.fmask_snow_raster)): logging.debug(' Overwriting: {}'.format( image.fmask_snow_raster)) dripy.remove_file(image.fmask_snow_raster) if (calc_fmask_water_flag and overwrite_flag and os.path.isfile(image.fmask_water_raster)): logging.debug(' Overwriting: {}'.format( image.fmask_water_raster)) dripy.remove_file(image.fmask_water_raster) # Save Fmask data as separate rasters if (calc_fmask_flag and not os.path.isfile(image.fmask_output_raster)): logging.debug(' Saving Fmask raster') drigo.array_to_raster( fmask_array.astype(np.uint8), image.fmask_output_raster, output_geo=common_geo, output_proj=common_proj, mask_array=None, output_nodata=255, stats_flag=stats_flag) if (calc_fmask_cloud_flag and not os.path.isfile(image.fmask_cloud_raster)): logging.debug(' Saving Fmask cloud raster') fmask_cloud_array = (fmask_array == 2) | (fmask_array == 4) drigo.array_to_raster( fmask_cloud_array.astype(np.uint8), image.fmask_cloud_raster, output_geo=common_geo, output_proj=common_proj, mask_array=None, output_nodata=255, stats_flag=stats_flag) del fmask_cloud_array if (calc_fmask_snow_flag and not os.path.isfile(image.fmask_snow_raster)): logging.debug(' Saving Fmask snow raster') fmask_snow_array = (fmask_array == 3) drigo.array_to_raster( fmask_snow_array.astype(np.uint8), image.fmask_snow_raster, output_geo=common_geo, output_proj=common_proj, mask_array=None, output_nodata=255, stats_flag=stats_flag) del fmask_snow_array if (calc_fmask_water_flag and not os.path.isfile(image.fmask_water_raster)): logging.debug(' Saving Fmask water raster') fmask_water_array = (fmask_array == 1) drigo.array_to_raster( fmask_water_array.astype(np.uint8), image.fmask_water_raster, output_geo=common_geo, output_proj=common_proj, mask_array=None, output_nodata=255, stats_flag=stats_flag) del fmask_water_array del fmask_array # # Calculate elevation # if calc_elev_flag and not os.path.isfile(elev_path): # logging.info('Elevation') # elev_array, elev_nodata = drigo.raster_to_array( # elev_pr_path, 1, common_extent) # drigo.array_to_raster( # elev_array, elev_raster, # output_geo=common_geo, output_proj=env.snap_proj, # mask_array=common_array, stats_flag=stats_flag) # del elev_array, elev_nodata, elev_path # # # Calculate landuse # if calc_landuse_flag and not os.path.isfile(landuse_raster): # logging.info('Landuse') # landuse_array, landuse_nodata = drigo.raster_to_array( # landuse_pr_path, 1, common_extent) # drigo.array_to_raster( # landuse_array, landuse_raster, # output_geo=common_geo, output_proj=env.snap_proj, # mask_array=common_array, stats_flag=stats_flag) # del landuse_array, landuse_nodata, landuse_raster # Calculate toa reflectance # f32_gtype, f32_nodata = numpy_to_gdal_type(np.float32) if calc_refl_toa_flag: logging.info('Top-of-Atmosphere Reflectance') if os.path.isfile(image.refl_toa_raster) and overwrite_flag: logging.debug(' Overwriting: {}'.format( image.refl_toa_raster)) dripy.remove_file(image.refl_toa_raster) if not os.path.isfile(image.refl_toa_raster): # First build empty composite raster drigo.build_empty_raster( image.refl_toa_raster, image.band_toa_cnt, np.float32, None, env.snap_proj, env.cellsize, common_extent) # cos_theta_solar_flt = et_common.cos_theta_solar_func( # image.sun_elevation) # Process by block logging.info('Processing by block') logging.debug(' Mask cols/rows: {}/{}'.format( common_cols, common_rows)) for b_i, b_j in drigo.block_gen(common_rows, common_cols, bs): logging.debug(' Block y: {:5d} x: {:5d}'.format(b_i, b_j)) block_data_mask = drigo.array_to_block( common_array, b_i, b_j, bs).astype(np.bool) block_rows, block_cols = block_data_mask.shape block_geo = drigo.array_offset_geo(common_geo, b_j, b_i) block_extent = drigo.geo_extent( block_geo, block_rows, block_cols) logging.debug(' Block rows: {} cols: {}'.format( block_rows, block_cols)) logging.debug(' Block extent: {}'.format(block_extent)) logging.debug(' Block geo: {}'.format(block_geo)) # Process each TOA band # for band, band_i in sorted(image.band_toa_dict.items()): for band, dn_image in sorted(dn_image_dict.items()): if band not in image.band_toa_dict.keys(): continue # thermal_band_flag = (band == image.thermal_band) # Set 0 as nodata value drigo.raster_path_set_nodata(dn_image, 0) # Calculate TOA reflectance dn_array, dn_nodata = drigo.raster_to_array( dn_image, 1, block_extent) dn_array = dn_array.astype(np.float64) # dn_array = dn_array.astype(np.float32) dn_array[dn_array == 0] = np.nan # if image.type in ['Landsat4', 'Landsat5', 'Landsat7']: refl_toa_array = et_numpy.l457_refl_toa_band_func( dn_array, image.cos_theta_solar, image.dr, image.esun_dict[band], image.lmin_dict[band], image.lmax_dict[band], image.qcalmin_dict[band], image.qcalmax_dict[band]) elif image.type in ['Landsat8']: refl_toa_array = et_numpy.l8_refl_toa_band_func( dn_array, image.cos_theta_solar, image.refl_mult_dict[band], image.refl_add_dict[band]) # if (image.type in ['Landsat4', 'Landsat5', 'Landsat7'] and # not thermal_band_flag): # refl_toa_array = et_numpy.l457_refl_toa_band_func( # dn_array, image.cos_theta_solar, # image.dr, image.esun_dict[band], # image.lmin_dict[band], image.lmax_dict[band], # image.qcalmin_dict[band], # image.qcalmax_dict[band]) # # image.rad_mult_dict[band], # # image.rad_add_dict[band]) # elif (image.type in ['Landsat8'] and # not thermal_band_flag): # refl_toa_array = et_numpy.l8_refl_toa_band_func( # dn_array, image.cos_theta_solar, # image.refl_mult_dict[band], # image.refl_add_dict[band]) # elif (image.type in ['Landsat4', 'Landsat5', 'Landsat7'] and # thermal_band_flag): # refl_toa_array = et_numpy.l457_ts_bt_band_func( # dn_array, # image.lmin_dict[band], image.lmax_dict[band], # image.qcalmin_dict[band], # image.qcalmax_dict[band], # # image.rad_mult_dict[band], # # image.rad_add_dict[band], # image.k1_dict[band], image.k2_dict[band]) # elif (image.type in ['Landsat8'] and # thermal_band_flag): # refl_toa_array = et_numpy.l8_ts_bt_band_func( # dn_array, # image.rad_mult_dict[band], # image.rad_add_dict[band], # image.k1_dict[band], image.k2_dict[band]) # refl_toa_array = et_numpy.refl_toa_band_func( # dn_array, cos_theta_solar_flt, # image.dr, image.esun_dict[band], # image.lmin_dict[band], image.lmax_dict[band], # image.qcalmin_dict[band], image.qcalmax_dict[band], # thermal_band_flag) drigo.block_to_raster( refl_toa_array.astype(np.float32), image.refl_toa_raster, b_i, b_j, band=image.band_toa_dict[band]) # drigo.array_to_comp_raster( # refl_toa_array.astype(np.float32), # image.refl_toa_raster, # image.band_toa_dict[band], common_array) del refl_toa_array, dn_array if stats_flag: drigo.raster_statistics(image.refl_toa_raster) # # Process each TOA band # # for band, band_i in sorted(image.band_toa_dict.items()): # for band, dn_image in sorted(dn_image_dict.items()): # thermal_band_flag = (band == image.thermal_band) # # Set 0 as nodata value # drigo.raster_path_set_nodata(dn_image, 0) # # Calculate TOA reflectance # dn_array, dn_nodata = drigo.raster_to_array( # dn_image, 1, common_extent) # dn_array = dn_array.astype(np.float64) # # dn_array = dn_array.astype(np.float32) # dn_array[dn_array == 0] = np.nan # # # if (image.type in ['Landsat4', 'Landsat5', 'Landsat7'] and # not thermal_band_flag): # refl_toa_array = et_numpy.l457_refl_toa_band_func( # dn_array, image.cos_theta_solar, # image.dr, image.esun_dict[band], # image.lmin_dict[band], image.lmax_dict[band], # image.qcalmin_dict[band], image.qcalmax_dict[band]) # # image.rad_mult_dict[band], image.rad_add_dict[band]) # elif (image.type in ['Landsat4', 'Landsat5', 'Landsat7'] and # thermal_band_flag): # refl_toa_array = et_numpy.l457_ts_bt_band_func( # dn_array, image.lmin_dict[band], image.lmax_dict[band], # image.qcalmin_dict[band], image.qcalmax_dict[band], # # image.rad_mult_dict[band], image.rad_add_dict[band], # image.k1_dict[band], image.k2_dict[band]) # elif (image.type in ['Landsat8'] and # not thermal_band_flag): # refl_toa_array = et_numpy.l8_refl_toa_band_func( # dn_array, image.cos_theta_solar, # image.refl_mult_dict[band], image.refl_add_dict[band]) # elif (image.type in ['Landsat8'] and # thermal_band_flag): # refl_toa_array = et_numpy.l8_ts_bt_band_func( # dn_array, # image.rad_mult_dict[band], image.rad_add_dict[band], # image.k1_dict[band], image.k2_dict[band]) # # refl_toa_array = et_numpy.refl_toa_band_func( # # dn_array, cos_theta_solar_flt, # # image.dr, image.esun_dict[band], # # image.lmin_dict[band], image.lmax_dict[band], # # image.qcalmin_dict[band], image.qcalmax_dict[band], # # thermal_band_flag) # drigo.array_to_comp_raster( # refl_toa_array.astype(np.float32), image.refl_toa_raster, # image.band_toa_dict[band], common_array) # del refl_toa_array, dn_array # Calculate brightness temperature if calc_ts_bt_flag: logging.info('Brightness Temperature') if os.path.isfile(image.ts_bt_raster) and overwrite_flag: logging.debug(' Overwriting: {}'.format(image.ts_bt_raster)) dripy.remove_file(image.ts_bt_raster) if not os.path.isfile(image.ts_bt_raster): band = image.thermal_band thermal_dn_path = dn_image_dict[band] drigo.raster_path_set_nodata(thermal_dn_path, 0) thermal_dn_array, thermal_dn_nodata = drigo.raster_to_array( thermal_dn_path, 1, common_extent, return_nodata=True) thermal_dn_mask = thermal_dn_array != thermal_dn_nodata if image.type in ['Landsat4', 'Landsat5', 'Landsat7']: ts_bt_array = et_numpy.l457_ts_bt_band_func( thermal_dn_array, image.lmin_dict[band], image.lmax_dict[band], image.qcalmin_dict[band], image.qcalmax_dict[band], # image.rad_mult_dict[band], image.rad_add_dict[band], image.k1_dict[band], image.k2_dict[band]) elif image.type in ['Landsat8']: ts_bt_array = et_numpy.l8_ts_bt_band_func( thermal_dn_array, image.rad_mult_dict[band], image.rad_add_dict[band], image.k1_dict[band], image.k2_dict[band]) # thermal_rad_array = et_numpy.refl_toa_band_func( # thermal_dn_array, image.cos_theta_solar, # image.dr, image.esun_dict[band], # image.lmin_dict[band], image.lmax_dict[band], # image.qcalmin_dict[band], image.qcalmax_dict[band], # thermal_band_flag=True) # ts_bt_array = et_numpy.ts_bt_func( # thermal_rad_array, image.k1_dict[image.thermal_band], # image.k2_dict[image.thermal_band]) ts_bt_array[~thermal_dn_mask] = np.nan drigo.array_to_raster( ts_bt_array, image.ts_bt_raster, output_geo=common_geo, output_proj=env.snap_proj, # mask_array=common_array, stats_flag=stats_flag) # del thermal_dn_array, thermal_rad_array del thermal_dn_path, thermal_dn_array, ts_bt_array # Interpolate/project/clip METRIC hourly/daily rasters if (calc_metric_ea_flag or calc_metric_wind_flag or calc_metric_etr_flag): logging.info('METRIC hourly/daily rasters') # Get bracketing hours from image acquisition time image_prev_dt = image.acq_datetime.replace( minute=0, second=0, microsecond=0) image_next_dt = image_prev_dt + timedelta(seconds=3600) # Get NLDAS properties from one of the images input_ws = os.path.join( metric_etr_input_ws, str(image_prev_dt.year)) try: input_path = [ os.path.join(input_ws, file_name) for file_name in os.listdir(input_ws) for match in [metric_hourly_re.match(file_name)] if (match and (image_prev_dt.strftime('%Y%m%d') == match.group('YYYYMMDD')))][0] except IndexError: logging.error(' No hourly file for {}'.format( image_prev_dt.strftime('%Y-%m-%d %H00'))) return False try: input_ds = gdal.Open(input_path) input_osr = drigo.raster_ds_osr(input_ds) # input_proj = drigo.osr_proj(input_osr) input_extent = drigo.raster_ds_extent(input_ds) input_cs = drigo.raster_ds_cellsize(input_ds, x_only=True) # input_geo = input_extent.geo(input_cs) input_x, input_y = input_extent.origin() input_ds = None except: logging.error(' Could not get default input image properties') logging.error(' {}'.format(input_path)) return False # Project Landsat scene extent to NLDAS GCS common_gcs_osr = common_osr.CloneGeogCS() common_gcs_extent = drigo.project_extent( common_extent, common_osr, common_gcs_osr, cellsize=env.cellsize) common_gcs_extent.buffer_extent(0.1) common_gcs_extent.adjust_to_snap( 'EXPAND', input_x, input_y, input_cs) # common_gcs_geo = common_gcs_extent.geo(input_cs) def metric_weather_func(output_raster, input_ws, input_re, prev_dt, next_dt, resample_method=gdal.GRA_NearestNeighbour, rounding_flag=False): """Interpolate/project/clip METRIC hourly rasters""" logging.debug(' Output: {}'.format(output_raster)) if os.path.isfile(output_raster): if overwrite_flag: logging.debug(' Overwriting output') dripy.remove_file(output_raster) else: logging.debug(' Skipping, file already exists ' + 'and overwrite is False') return False prev_ws = os.path.join(input_ws, str(prev_dt.year)) next_ws = os.path.join(input_ws, str(next_dt.year)) # Technically previous and next could come from different days # or even years, although this won't happen in the U.S. try: prev_path = [ os.path.join(prev_ws, input_name) for input_name in os.listdir(prev_ws) for input_match in [input_re.match(input_name)] if (input_match and (prev_dt.strftime('%Y%m%d') == input_match.group('YYYYMMDD')))][0] logging.debug(' Input prev: {}'.format(prev_path)) except IndexError: logging.error(' No previous hourly file') logging.error(' {}'.format(prev_dt)) return False try: next_path = [ os.path.join(next_ws, input_name) for input_name in os.listdir(next_ws) for input_match in [input_re.match(input_name)] if (input_match and (next_dt.strftime('%Y%m%d') == input_match.group('YYYYMMDD')))][0] logging.debug(' Input next: {}'.format(next_path)) except IndexError: logging.error(' No next hourly file') logging.error(' {}'.format(next_dt)) return False # Band numbers are 1's based prev_band = int(prev_dt.strftime('%H')) + 1 next_band = int(next_dt.strftime('%H')) + 1 logging.debug(' Input prev band: {}'.format(prev_band)) logging.debug(' Input next band: {}'.format(next_band)) # Read arrays prev_array = drigo.raster_to_array( prev_path, band=prev_band, mask_extent=common_gcs_extent, return_nodata=False) next_array = drigo.raster_to_array( next_path, band=next_band, mask_extent=common_gcs_extent, return_nodata=False) if not np.any(prev_array) or not np.any(next_array): logging.warning('\nWARNING: Input NLDAS array is all nodata\n') return None output_array = hourly_interpolate_func( prev_array, next_array, prev_dt, next_dt, image.acq_datetime) output_array = drigo.project_array( output_array, resample_method, input_osr, input_cs, common_gcs_extent, common_osr, env.cellsize, common_extent, output_nodata=None) # Apply common area mask output_array[~common_array] = np.nan # Reduce the file size by rounding to the nearest n digits if rounding_flag: output_array = np.around(output_array, rounding_digits) # Force output to 32-bit float drigo.array_to_raster( output_array.astype(np.float32), output_raster, output_geo=common_geo, output_proj=common_proj, stats_flag=stats_flag) del output_array return True # Ea - Project to Landsat scene after clipping if calc_metric_ea_flag: logging.info(' Hourly vapor pressure (Ea)') metric_weather_func( image.metric_ea_raster, metric_ea_input_ws, metric_hourly_re, image_prev_dt, image_next_dt, gdal.GRA_Bilinear, rounding_flag=True) # Wind - Project to Landsat scene after clipping if calc_metric_wind_flag: logging.info(' Hourly windspeed') metric_weather_func( image.metric_wind_raster, metric_wind_input_ws, metric_hourly_re, image_prev_dt, image_next_dt, gdal.GRA_NearestNeighbour, rounding_flag=False) # ETr - Project to Landsat scene after clipping if calc_metric_etr_flag: logging.info(' Hourly reference ET (ETr)') metric_weather_func( image.metric_etr_raster, metric_etr_input_ws, metric_hourly_re, image_prev_dt, image_next_dt, gdal.GRA_NearestNeighbour, rounding_flag=False) # ETr 24hr - Project to Landsat scene after clipping if calc_metric_etr_flag: logging.info(' Daily reference ET (ETr)') logging.debug(' Output: {}'.format( image.metric_etr_24hr_raster)) if (os.path.isfile(image.metric_etr_24hr_raster) and overwrite_flag): logging.debug(' Overwriting output') os.remove(image.metric_etr_24hr_raster) if not os.path.isfile(image.metric_etr_24hr_raster): etr_prev_ws = os.path.join( metric_etr_input_ws, str(image_prev_dt.year)) try: input_path = [ os.path.join(etr_prev_ws, file_name) for file_name in os.listdir(etr_prev_ws) for match in [metric_daily_re.match(file_name)] if (match and (image_prev_dt.strftime('%Y%m%d') == match.group('YYYYMMDD')))][0] logging.debug(' Input: {}'.format(input_path)) except IndexError: logging.error(' No daily file for {}'.format( image_prev_dt.strftime('%Y-%m-%d'))) return False output_array = drigo.raster_to_array( input_path, mask_extent=common_gcs_extent, return_nodata=False) output_array = drigo.project_array( output_array, gdal.GRA_NearestNeighbour, input_osr, input_cs, common_gcs_extent, common_osr, env.cellsize, common_extent, output_nodata=None) # Apply common area mask output_array[~common_array] = np.nan # Reduce the file size by rounding to the nearest n digits # output_array = np.around(output_array, rounding_digits) drigo.array_to_raster( output_array, image.metric_etr_24hr_raster, output_geo=common_geo, output_proj=common_proj, stats_flag=stats_flag) del output_array del input_path # Tair - Project to Landsat scene after clipping if calc_metric_tair_flag: logging.info(' Hourly air temperature (Tair)') metric_weather_func( image.metric_tair_raster, metric_tair_input_ws, metric_hourly_re, image_prev_dt, image_next_dt, gdal.GRA_NearestNeighbour, rounding_flag=False) # Cleanup del image_prev_dt, image_next_dt # Soil Water Balance if calc_swb_ke_flag: logging.info('Daily soil water balance') # Check if output file already exists logging.debug(' Ke: {}'.format(image.ke_raster)) if os.path.isfile(image.ke_raster): if overwrite_flag: logging.debug(' Overwriting output') dripy.remove_file(image.ke_raster) else: logging.debug(' Skipping, file already ' 'exists and overwrite is False') return False ke_array = et_common.raster_swb_func( image.acq_datetime, common_osr, env.cellsize, common_extent, awc_input_path, etr_input_ws, etr_input_re, ppt_input_ws, ppt_input_re, spinup_days=spinup_days, min_spinup_days=min_spinup_days) # Apply common area mask ke_array[~common_array] = np.nan # Reduce the file size by rounding to the nearest 2 digits np.around(ke_array, 2, out=ke_array) # Force output to 32-bit float drigo.array_to_raster( ke_array.astype(np.float32), image.ke_raster, output_geo=common_geo, output_proj=common_proj, stats_flag=stats_flag) # Remove Landsat TOA rasters if not keep_dn_flag: for landsat_item in dripy.build_file_list( image.orig_data_ws, image.image_name_re): os.remove(os.path.join(image.orig_data_ws, landsat_item)) return True
def pixel_rating(image_ws, ini_path, stats_flag=False, overwrite_flag=None): """Calculate pixel rating Args: image_ws (str): Image folder path ini_path (str): Pixel regions config file path stats_flag (bool): if True, compute raster statistics ovewrite_flag (bool): if True, overwrite existing files Returns: None """ logging.info('Generating suggested hot/cold pixel regions') log_fmt = ' {:<18s} {}' env = gdc.env image = et_image.Image(image_ws, env) np.seterr(invalid='ignore') # # Check that image_ws is valid # image_re = re.compile( # '^(LT04|LT05|LE07|LC08)_(\d{3})(\d{3})_(\d{4})(\d{2})(\d{2})') # if not os.path.isdir(image_ws) or not image_re.match(scene_id): # logging.error('\nERROR: Image folder is invalid or does not exist\n') # return False # Folder Paths region_ws = os.path.join(image_ws, 'PIXEL_REGIONS') # Open config file config = open_ini(ini_path) # Get input parameters logging.debug(' Reading Input File') # Arrays are processed by block bs = read_param('block_size', 1024, config) logging.info(' {:<18s} {}'.format('Block Size:', bs)) # Raster pyramids/statistics pyramids_flag = read_param('pyramids_flag', False, config) if pyramids_flag: gdal.SetConfigOption('HFA_USE_RRD', 'YES') if stats_flag is None: stats_flag = read_param('statistics_flag', False, config) # Overwrite if overwrite_flag is None: overwrite_flag = read_param('overwrite_flag', True, config) # Check that common_area raster exists if not os.path.isfile(image.common_area_raster): logging.error( '\nERROR: A common area raster was not found.' + '\nERROR: Please rerun prep tool to build these files.\n' + ' {}\n'.format(image.common_area_raster)) sys.exit() # Use common_area to set mask parameters common_ds = gdal.Open(image.common_area_raster) # env.mask_proj = raster_ds_proj(common_ds) env.mask_geo = gdc.raster_ds_geo(common_ds) env.mask_rows, env.mask_cols = gdc.raster_ds_shape(common_ds) env.mask_extent = gdc.geo_extent(env.mask_geo, env.mask_rows, env.mask_cols) env.mask_array = gdc.raster_ds_to_array(common_ds)[0] env.mask_path = image.common_area_raster env.snap_osr = gdc.raster_path_osr(image.common_area_raster) env.snap_proj = env.snap_osr.ExportToWkt() env.cellsize = gdc.raster_path_cellsize(image.common_area_raster)[0] common_ds = None logging.debug(' {:<18s} {}'.format('Mask Extent:', env.mask_extent)) # Read Pixel Regions config file # Currently there is no code to support applying an NLCD mask apply_nlcd_mask = False # apply_nlcd_mask = read_param('apply_nlcd_mask', False, config) apply_cdl_ag_mask = read_param('apply_cdl_ag_mask', False, config) apply_field_mask = read_param('apply_field_mask', False, config) apply_ndwi_mask = read_param('apply_ndwi_mask', True, config) apply_ndvi_mask = read_param('apply_ndvi_mask', True, config) # Currently the code to apply a study area mask is commented out # apply_study_area_mask = read_param( # 'apply_study_area_mask', False, config) albedo_rating_flag = read_param('albedo_rating_flag', True, config) nlcd_rating_flag = read_param('nlcd_rating_flag', True, config) ndvi_rating_flag = read_param('ndvi_rating_flag', True, config) ts_rating_flag = read_param('ts_rating_flag', True, config) ke_rating_flag = read_param('ke_rating_flag', False, config) # if apply_study_area_mask: # study_area_path = config.get('INPUTS', 'study_area_path') if apply_nlcd_mask or nlcd_rating_flag: nlcd_raster = config.get('INPUTS', 'landuse_raster') if apply_cdl_ag_mask: cdl_ag_raster = config.get('INPUTS', 'cdl_ag_raster') cdl_buffer_cells = read_param('cdl_buffer_cells', 0, config) cdl_ag_eroded_name = read_param('cdl_ag_eroded_name', 'cdl_ag_eroded_{}.img', config) if apply_field_mask: field_raster = config.get('INPUTS', 'fields_raster') cold_rating_pct = read_param('cold_percentile', 99, config) hot_rating_pct = read_param('hot_percentile', 99, config) # min_cold_rating_score = read_param('min_cold_rating_score', 0.3, config) # min_hot_rating_score = read_param('min_hot_rating_score', 0.3, config) ts_bin_count = int(read_param('ts_bin_count', 10, config)) if 100 % ts_bin_count != 0: logging.warning( 'WARNING: ts_bins_count of {} is not a divisor ' + 'of 100. Using default ts_bins_count = 4'.format(ts_bin_count)) ts_bin_count = 10 bin_size = 1. / (ts_bin_count - 1) hot_rating_values = np.arange(0., 1. + bin_size, step=bin_size) cold_rating_values = hot_rating_values[::-1] # Input raster paths r_fmt = '.img' if 'Landsat' in image.type: albedo_raster = image.albedo_sur_raster ndvi_raster = image.ndvi_toa_raster ndwi_raster = image.ndwi_toa_raster ts_raster = image.ts_raster ke_raster = image.ke_raster # Check config file input paths # if apply_study_area_mask and not os.path.isfile(study_area_path): # logging.error( # ('\nERROR: The study area shapefile {} does ' + # 'not exist\n').format(study_area_path)) # sys.exit() if ((apply_nlcd_mask or nlcd_rating_flag) and not os.path.isfile(nlcd_raster)): logging.error(('\nERROR: The NLCD raster {} does ' + 'not exist\n').format(nlcd_raster)) sys.exit() if apply_cdl_ag_mask and not os.path.isfile(cdl_ag_raster): logging.error(('\nERROR: The CDL Ag raster {} does ' + 'not exist\n').format(cdl_ag_raster)) sys.exit() if apply_field_mask and not os.path.isfile(field_raster): logging.error(('\nERROR: The field raster {} does ' + 'not exist\n').format(field_raster)) sys.exit() if (not (isinstance(cold_rating_pct, (int, float)) and (0 <= cold_rating_pct <= 100))): logging.error( '\nERROR: cold_percentile must be a value between 0 and 100\n') sys.exit() if (not (isinstance(hot_rating_pct, (int, float)) and (0 <= hot_rating_pct <= 100))): logging.error( '\nERROR: hot_percentile must be a value between 0 and 100\n') sys.exit() # Set raster names raster_dict = dict() # Output Rasters raster_dict['region_mask'] = os.path.join(region_ws, 'region_mask' + r_fmt) raster_dict['cold_rating'] = os.path.join(region_ws, 'cold_pixel_rating' + r_fmt) raster_dict['hot_rating'] = os.path.join(region_ws, 'hot_pixel_rating' + r_fmt) raster_dict['cold_sugg'] = os.path.join(region_ws, 'cold_pixel_suggestion' + r_fmt) raster_dict['hot_sugg'] = os.path.join(region_ws, 'hot_pixel_suggestion' + r_fmt) # Read pixel region raster flags save_dict = dict() save_dict['region_mask'] = read_param('save_region_mask_flag', False, config) save_dict['cold_rating'] = read_param('save_rating_rasters_flag', False, config) save_dict['hot_rating'] = read_param('save_rating_rasters_flag', False, config) save_dict['cold_sugg'] = read_param('save_suggestion_rasters_flag', True, config) save_dict['hot_sugg'] = read_param('save_suggestion_rasters_flag', True, config) # Output folder if not os.path.isdir(region_ws): os.mkdir(region_ws) # Remove existing files if necessary region_ws_file_list = [ os.path.join(region_ws, item) for item in os.listdir(region_ws) ] if overwrite_flag and region_ws_file_list: for raster_path in raster_dict.values(): if raster_path in region_ws_file_list: remove_file(raster_path) # Check scene specific input paths if apply_ndwi_mask and not os.path.isfile(ndwi_raster): logging.error( 'ERROR: NDWI raster does not exist\n {}'.format(ndwi_raster)) sys.exit() elif apply_ndvi_mask and not os.path.isfile(ndvi_raster): logging.error( 'ERROR: NDVI raster does not exist\n {}'.format(ndvi_raster)) sys.exit() elif ke_rating_flag and not os.path.isfile(ke_raster): logging.error( ('ERROR: The Ke raster does not exist\n {}').format(ke_raster)) sys.exit() # Remove existing and build new empty rasters if necessary # If processing by block, rating rasters must be built logging.debug('\nBuilding empty rasters') for name, save_flag in sorted(save_dict.items()): if save_flag and 'rating' in name: gdc.build_empty_raster(raster_dict[name], 1, np.float32) elif save_flag: gdc.build_empty_raster(raster_dict[name], 1, np.uint8, output_nodata=0) if apply_cdl_ag_mask: logging.info('Building CDL ag mask') cdl_array = gdc.raster_to_array(cdl_ag_raster, mask_extent=env.mask_extent, return_nodata=False) if cdl_buffer_cells > 0: logging.info(' Eroding CDL by {} cells'.format(cdl_buffer_cells)) structure_array = np.ones((cdl_buffer_cells, cdl_buffer_cells), dtype=np.int) # Deadbeef - This could blow up in memory on bigger rasters cdl_array = ndimage.binary_erosion( cdl_array, structure_array).astype(structure_array.dtype) cdl_ag_eroded_raster = os.path.join( image.support_ws, cdl_ag_eroded_name.format(cdl_buffer_cells)) gdc.array_to_raster(cdl_array, cdl_ag_eroded_raster, output_geo=env.mask_geo, output_proj=env.snap_proj, mask_array=env.mask_array, output_nodata=0, stats_flag=False) cdl_array = None del cdl_array # Build region mask logging.debug('Building region mask') region_mask = np.copy(env.mask_array).astype(np.bool) if apply_field_mask: field_mask, field_nodata = gdc.raster_to_array( field_raster, mask_extent=env.mask_extent, return_nodata=True) region_mask &= field_mask != field_nodata del field_mask, field_nodata if apply_ndwi_mask: ndwi_array = gdc.raster_to_array(ndwi_raster, 1, mask_extent=env.mask_extent, return_nodata=False) region_mask &= ndwi_array > 0.0 del ndwi_array if apply_ndvi_mask: ndvi_array = gdc.raster_to_array(ndvi_raster, 1, mask_extent=env.mask_extent, return_nodata=False) region_mask &= ndvi_array > 0.12 del ndvi_array if apply_cdl_ag_mask: cdl_array, cdl_nodata = gdc.raster_to_array( cdl_ag_eroded_raster, mask_extent=env.mask_extent, return_nodata=True) region_mask &= cdl_array != cdl_nodata del cdl_array, cdl_nodata if save_dict['region_mask']: gdc.array_to_raster(region_mask, raster_dict['region_mask'], stats_flag=False) # Initialize rating arrays # This needs to be done before the ts_rating if block cold_rating_array = np.ones(env.mask_array.shape, dtype=np.float32) hot_rating_array = np.ones(env.mask_array.shape, dtype=np.float32) cold_rating_array[~region_mask] = np.nan hot_rating_array[~region_mask] = np.nan # Temperature pixel rating - grab the max and min value for the entire # Ts image in a memory safe way by using gdal_common blocks # The following is a percentile based approach if ts_rating_flag: logging.debug('Computing Ts percentile rating') ts_array = gdc.raster_to_array(ts_raster, mask_extent=env.mask_extent, return_nodata=False) ts_array[~region_mask] = np.nan percentiles = range(0, (100 + ts_bin_count), int(100 / ts_bin_count)) ts_score_value = 1. / (ts_bin_count - 1) hot_rating_values = np.arange(0, (1. + ts_score_value), step=ts_score_value)[:ts_bin_count] cold_rating_values = hot_rating_values[::-1] ts_percentile_array = stats.scoreatpercentile( ts_array[np.isfinite(ts_array)], percentiles) for bins_i in range(len(ts_percentile_array))[:-1]: bool_array = ((ts_array > ts_percentile_array[bins_i]) & (ts_array <= ts_percentile_array[bins_i + 1])) cold_rating_array[bool_array] = cold_rating_values[bins_i] hot_rating_array[bool_array] = hot_rating_values[bins_i] # gdc.array_to_raster(cold_rating_array, raster_dict['cold_rating']) # gdc.array_to_raster(hot_rating_array, raster_dict['hot_rating']) # Cleanup del ts_array, ts_percentile_array del cold_rating_values, hot_rating_values del ts_score_value, percentiles # Process by block logging.info('\nProcessing by block') logging.debug(' Mask cols/rows: {}/{}'.format(env.mask_cols, env.mask_rows)) for b_i, b_j in gdc.block_gen(env.mask_rows, env.mask_cols, bs): logging.debug(' Block y: {:5d} x: {:5d}'.format(b_i, b_j)) block_data_mask = gdc.array_to_block(env.mask_array, b_i, b_j, bs).astype(np.bool) # block_nodata_mask = ~block_data_mask block_rows, block_cols = block_data_mask.shape block_geo = gdc.array_offset_geo(env.mask_geo, b_j, b_i) block_extent = gdc.geo_extent(block_geo, block_rows, block_cols) logging.debug(' Block rows: {} cols: {}'.format( block_rows, block_cols)) # logging.debug(' Block extent: {}'.format(block_extent)) # logging.debug(' Block geo: {}'.format(block_geo)) # Don't skip empty blocks since block rating needs to be written # back to the array at the end of the block loop block_region_mask = gdc.array_to_block(region_mask, b_i, b_j, bs) if not np.any(block_region_mask): logging.debug(' Empty block') block_empty_flag = True else: block_empty_flag = False # New style continuous pixel weighting cold_rating_block = gdc.array_to_block(cold_rating_array, b_i, b_j, bs) hot_rating_block = gdc.array_to_block(hot_rating_array, b_i, b_j, bs) # Rating arrays already have region_mask set # cold_rating_block = np.ones(block_region_mask.shape, dtype=np.float32) # hot_rating_block = np.ones(block_region_mask.shape, dtype=np.float32) # cold_rating_block[~block_region_mask] = np.nan # hot_rating_block[~block_region_mask] = np.nan # del block_region_mask if ndvi_rating_flag and not block_empty_flag: # NDVI based rating ndvi_array = gdc.raster_to_array(ndvi_raster, 1, mask_extent=block_extent, return_nodata=False) # Don't let NDVI be negative ndvi_array.clip(0., 0.833, out=ndvi_array) # ndvi_array.clip(0.001, 0.833, out=ndvi_array) cold_rating_block *= ndvi_array cold_rating_block *= 1.20 ndvi_mask = (ndvi_array > 0) # DEADBEEF - Can this calculation be masked to only NDVI > 0? ndvi_mask = ndvi_array > 0 hot_rating_block[ndvi_mask] *= stats.norm.pdf( np.log(ndvi_array[ndvi_mask]), math.log(0.15), 0.5) hot_rating_block[ndvi_mask] *= 1.25 del ndvi_mask # hot_rating_block *= stats.norm.pdf( # np.log(ndvi_array), math.log(0.15), 0.5) # hot_rating_block *= 1.25 # cold_rating_block.clip(0., 1., out=cold_rating_block) # hot_rating_block.clip(0., 1., out=hot_rating_block) del ndvi_array if albedo_rating_flag and not block_empty_flag: # Albdo based rating albedo_array = gdc.raster_to_array(albedo_raster, 1, mask_extent=block_extent, return_nodata=False) albedo_cold_pdf = stats.norm.pdf(albedo_array, 0.21, 0.03) albedo_hot_pdf = stats.norm.pdf(albedo_array, 0.21, 0.06) del albedo_array cold_rating_block *= albedo_cold_pdf cold_rating_block *= 0.07 hot_rating_block *= albedo_hot_pdf hot_rating_block *= 0.15 # cold_rating_block.clip(0., 1., out=cold_rating_block) # hot_rating_block.clip(0., 1., out=hot_rating_block) del albedo_cold_pdf, albedo_hot_pdf if nlcd_rating_flag and not block_empty_flag: # NLCD based weighting, this could be CDL instead? nlcd_array = nlcd_rating( gdc.raster_to_array(nlcd_raster, 1, mask_extent=block_extent, return_nodata=False)) cold_rating_block *= nlcd_array hot_rating_block *= nlcd_array del nlcd_array if ke_rating_flag and not block_empty_flag: # SWB Ke based rating ke_array = gdc.raster_to_array(ke_raster, 1, mask_extent=block_extent, return_nodata=False) # Don't let NDVI be negative ke_array.clip(0., 1., out=ke_array) # Assumption, lower Ke is better for selecting the hot pixel # As the power (2) decreases and approaches 1, # the relationship gets more linear # cold_rating_block *= (1 - ke_array ** 2) # hot_rating_block *= (1 - ke_array ** 1.5) # Linear inverse # cold_rating_block *= (1. - ke_array) hot_rating_block *= (1. - ke_array) # cold_rating_block.clip(0., 1., out=cold_rating_block) # hot_rating_block.clip(0., 1., out=hot_rating_block) del ke_array # Clearness # clearness = 1.0 # cold_rating *= clearness # hot_rating *= clearness # Reset nan values # cold_rating_block[~region_mask] = np.nan # hot_rating_block[~region_mask] = np.nan # Save rating values cold_rating_array = gdc.block_to_array(cold_rating_block, cold_rating_array, b_i, b_j, bs) hot_rating_array = gdc.block_to_array(hot_rating_block, hot_rating_array, b_i, b_j, bs) # Save rating rasters if save_dict['cold_rating']: gdc.block_to_raster(cold_rating_block, raster_dict['cold_rating'], b_i, b_j, bs) if save_dict['hot_rating']: gdc.block_to_raster(hot_rating_block, raster_dict['hot_rating'], b_i, b_j, bs) # Save rating values cold_rating_array = gdc.block_to_array(cold_rating_block, cold_rating_array, b_i, b_j, bs) hot_rating_array = gdc.block_to_array(hot_rating_block, hot_rating_array, b_i, b_j, bs) del cold_rating_block, hot_rating_block # Select pixels above target percentile # Only build suggestion arrays if saving logging.debug('Building suggested pixel rasters') if save_dict['cold_sugg']: cold_rating_score = float( stats.scoreatpercentile( cold_rating_array[np.isfinite(cold_rating_array)], cold_rating_pct)) # cold_rating_array, cold_rating_nodata = gdc.raster_to_array( # raster_dict['cold_rating'], 1, mask_extent=env.mask_extent) # if cold_rating_score < float(min_cold_rating_score): # logging.error(('ERROR: The cold_rating_score ({}) is less ' + # 'than the min_cold_rating_score ({})').format( # cold_rating_score, min_cold_rating_score)) # sys.exit() cold_sugg_mask = cold_rating_array >= cold_rating_score gdc.array_to_raster(cold_sugg_mask, raster_dict['cold_sugg'], stats_flag=stats_flag) logging.debug(' Cold Percentile: {}'.format(cold_rating_pct)) logging.debug(' Cold Score: {:.6f}'.format(cold_rating_score)) logging.debug(' Cold Pixels: {}'.format(np.sum(cold_sugg_mask))) del cold_sugg_mask, cold_rating_array if save_dict['hot_sugg']: hot_rating_score = float( stats.scoreatpercentile( hot_rating_array[np.isfinite(hot_rating_array)], hot_rating_pct)) # hot_rating_array, hot_rating_nodata = gdc.raster_to_array( # raster_dict['hot_rating'], 1, mask_extent=env.mask_extent) # if hot_rating_score < float(min_hot_rating_score): # logging.error(('ERROR: The hot_rating_array ({}) is less ' + # 'than the min_hot_rating_score ({})').format( # hot_rating_array, min_hot_rating_score)) # sys.exit() hot_sugg_mask = hot_rating_array >= hot_rating_score gdc.array_to_raster(hot_sugg_mask, raster_dict['hot_sugg'], stats_flag=stats_flag) logging.debug(' Hot Percentile: {}'.format(hot_rating_pct)) logging.debug(' Hot Score: {:.6f}'.format(hot_rating_score)) logging.debug(' Hot Pixels: {}'.format(np.sum(hot_sugg_mask))) del hot_sugg_mask, hot_rating_array # Raster Statistics if stats_flag: logging.info('Calculating Statistics') for name, save_flag in save_dict.items(): if save_flag: gdc.raster_statistics(raster_dict[name]) # Raster Pyramids if pyramids_flag: logging.info('Building Pyramids') for name, save_flag in save_dict.items(): if save_flag: gdc.raster_pyramids(raster_dict[name])
def monte_carlo(image_ws, metric_ini_path, mc_ini_path, mc_iter=None, cold_tgt_pct=None, hot_tgt_pct=None, groupsize=64, blocksize=4096, multipoint_flag=False, shapefile_flag=False, stats_flag=False, overwrite_flag=False, debug_flag=False, no_etrf_final_plots=None, no_etrf_temp_plots=None): """METRIC Monte Carlo Parameters ---------- image_ws : str The workspace (path) of the landsat scene folder. metric_ini_path : str The METRIC config file (path). mc_ini_path : str The Monte Carlo config file (path). mc_iter : int, optional Iteration number for Monte Carlo processing. cold_tgt_pct : float, optional Target percentage of pixels with ETrF > than cold Kc. hot_tgt_pct : float, optional Target percentage of pixels with ETrF < than hot Kc. groupsize : int, optional Script will try to place calibration point randomly into a labeled group of clustered values with at least n pixels. -1 = In the largest group 0 = Anywhere in the image (not currently implemented) 1 >= In any group with a pixel count greater or equal to n blocksize : int, optional Processing block size (the default is 4096). shapefile_flag : bool, optional If True, save calibration points to shapefile (the default is False). multipoint_flag : bool, optional If True, save cal. points to multipoint shapefile (the default is False). stats_flag : bool, optional If True, compute raster statistics (the default is False). ovewrite_flag : bool, optional If True, overwrite existing files (the default is False). debug_flag : bool, optional If True, enable debug level logging (the default is False). no_final_plots : bool, optional If True, don't save final ETrF histograms (the default is None). This will override the flag in the INI file. no_temp_plots : bool If True, don't save temp ETrF histogram (the default is None). This will override the flag in the INI file. Returns ------- None """ logging.info('METRIC Automated Calibration') # Open config file config = open_ini(mc_ini_path) # Get input parameters logging.debug(' Reading Input File') etrf_training_path = config.get('INPUTS', 'etrf_training_path') # Adjust Kc cold target value based on day of year # etrf_doy_adj_path = read_param( # 'etrf_doy_adj_path', None, config, 'INPUTS') # Intentionally set default to None, to trigger error in eval call kc_cold_doy_dict = read_param('kc_cold_doy_dict', None, config, 'INPUTS') kc_hot_doy_dict = read_param('kc_hot_doy_dict', None, config, 'INPUTS') # If the "no_" flags were set True, honor them and set the flag False # If the "no_" flags were not set by the user, use the INI flag values # If not set in the INI, default to False (don't save any plots) if no_etrf_temp_plots: save_etrf_temp_plots = False else: save_etrf_temp_plots = read_param('save_etrf_temp_plots', False, config, 'INPUTS') if no_etrf_final_plots: save_etrf_final_plots = False else: save_etrf_final_plots = read_param('save_etrf_final_plots', False, config, 'INPUTS') save_ndvi_plots = read_param('save_ndvi_plots', False, config, 'INPUTS') max_cal_iter = read_param('max_cal_iterations', 5, config, 'INPUTS') max_point_iter = read_param('max_point_iterations', 10, config, 'INPUTS') ts_diff_threshold = read_param('ts_diff_threshold', 4, config, 'INPUTS') etr_ws = config.get('INPUTS', 'etr_ws') ppt_ws = config.get('INPUTS', 'ppt_ws') etr_re = re.compile(config.get('INPUTS', 'etr_re')) ppt_re = re.compile(config.get('INPUTS', 'ppt_re')) awc_path = config.get('INPUTS', 'awc_path') spinup_days = read_param('swb_spinup_days', 5, config, 'INPUTS') min_spinup_days = read_param('swb_min_spinup_days', 30, config, 'INPUTS') log_fmt = ' {:<18s} {}' break_line = '\n{}'.format('#' * 80) env = drigo.env image = et_image.Image(image_ws, env) logging.info(log_fmt.format('Image:', image.folder_id)) # Check inputs for file_path in [awc_path]: if not os.path.isfile(file_path): logging.error('\nERROR: File {} does not exist'.format(file_path)) sys.exit() for folder in [etr_ws, ppt_ws]: if not os.path.isdir(folder): logging.error('\nERROR: Folder {} does not exist'.format(folder)) sys.exit() # if (etrf_doy_adj_path and not # os.path.isfile(etrf_doy_adj_path)): # logging.error( # '\nERROR: File {} does not exist.'.format( # etrf_doy_adj_path)) # sys.exit() # Use iteration number to file iteration string if mc_iter is None: mc_str = '' mc_fmt = '.img' elif int(mc_iter) < 0: logging.error('\nERROR: Iteration number must be a positive integer') return False else: mc_str = 'MC{:02d}_'.format(int(mc_iter)) mc_fmt = '_{:02d}.img'.format(int(mc_iter)) logging.info(' {:<18s} {}'.format('Iteration:', mc_iter)) # Folder names etrf_ws = os.path.join(image_ws, 'ETRF') # indices_ws = image.indices_ws region_ws = os.path.join(image_ws, 'PIXEL_REGIONS') pixels_ws = os.path.join(image_ws, 'PIXELS') plots_ws = os.path.join(image_ws, 'PLOTS') if shapefile_flag and not os.path.isdir(pixels_ws): os.mkdir(pixels_ws) if not os.path.isdir(plots_ws): os.mkdir(plots_ws) # File names r_fmt = '.img' etrf_path = os.path.join(etrf_ws, 'et_rf' + mc_fmt) region_path = os.path.join(region_ws, 'region_mask' + r_fmt) # Initialize calibration parameters dictionary logging.info(break_line) logging.info('Calibration Parameters') cal_dict = dict() logging.debug(' Reading target cold/hot Kc from INI') # Using eval is potentially a really bad way of reading this in try: kc_cold_doy_dict = eval('{' + kc_cold_doy_dict + '}') except: kc_cold_doy_dict = {1: 1.05, 366: 1.05} logging.info( ' ERROR: kc_cold_doy_dict was not parsed, using default values') try: kc_hot_doy_dict = eval('{' + kc_hot_doy_dict + '}') except: kc_hot_doy_dict = {1: 0.1, 366: 0.1} logging.info( ' ERROR: kc_hot_doy_dict was not parsed, using default values') logging.debug(' Kc cold dict: {}'.format(kc_cold_doy_dict)) logging.debug(' Kc hot dict: {}\n'.format(kc_hot_doy_dict)) # doy_cold, kc_cold = zip(*sorted(kc_cold_doy_dict.items())) cal_dict['cold_tgt_kc'] = np.interp( image.acq_doy, *zip(*sorted(kc_cold_doy_dict.items())), left=1.05, right=1.05) # doy_hot, kc_hot = zip(*sorted(kc_hot_doy_dict.items())) cal_dict['hot_tgt_kc'] = np.interp(image.acq_doy, *zip(*sorted(kc_hot_doy_dict.items())), left=0.1, right=0.1) # if etrf_doy_adj_path: # doy_adj_df = pd.read_csv(etrf_doy_adj_path) # doy_adj = float( # doy_adj_df[doy_adj_df['DOY'] == image.acq_doy]['ETRF_ADJ']) # cal_dict['cold_tgt_kc'] = cal_dict['cold_tgt_kc'] + doy_adj # Get hot/cold etrf fraction sizes if cold_tgt_pct is None or hot_tgt_pct is None: logging.info('ETrF Tail Size Percentages') logging.info(' Reading target tail size from file') cold_tgt_pct, hot_tgt_pct = auto_calibration.etrf_fractions( etrf_training_path) if cold_tgt_pct is None or hot_tgt_pct is None: logging.error('\nERROR: Tail sizes were not mannually set or ' 'read from the the file\n') return False cal_dict['cold_tgt_pct'] = cold_tgt_pct cal_dict['hot_tgt_pct'] = hot_tgt_pct logging.info(pixel_str_fmt.format('', 'Cold Pixel', 'Hot Pixel')) logging.info( pixel_flt_fmt.format('Target kc:', cal_dict['cold_tgt_kc'], cal_dict['hot_tgt_kc'])) logging.info( pixel_pct_fmt.format('Tail Size:', cal_dict['cold_tgt_pct'], cal_dict['hot_tgt_pct'])) # # Create calibration database # # Set overwrite false to use existing database if it exists # cal_ws = os.path.join(image_ws, cal_folder) # if not os.path.isdir(cal_ws): # os.mkdir(cal_ws) # cal_path = os.path.join(cal_ws, cal_name) # logging.info('{:<20s} {}\{}'.format( # 'Calibration DB:', cal_folder, cal_name)) # calibration_database.create_calibration_database( # image_ws, cal_path, overwrite_db_flag) # del cal_ws # Remove previous calibrations from database # logging.info(break_line) # calibration_database.remove_calibration_points( # image_ws, cal_path, cal_initials, mc_iter) # Get ETrF and region mask (from pixel rating) # Assume they have identical extents try: region_mask = drigo.raster_to_array(region_path, return_nodata=False) region_mask = region_mask.astype(np.bool) except: logging.error( '\nERROR: Pixel regions mask does not exist or could not be read.\n' ' Please try re-running the METRIC Pixel Rating tool.') logging.debug(' {} '.format(region_path)) return False # Remove previous plots logging.info(break_line) auto_calibration.remove_histograms(plots_ws, mc_iter) # Generate the NDVI histogram if save_ndvi_plots: logging.info(break_line) logging.info('NDVI Histograms') if os.path.isfile(image.ndvi_toa_raster): ndvi_array = drigo.raster_to_array(image.ndvi_toa_raster, return_nodata=False) else: logging.error( '\nERROR: NDVI raster does not exist. METRIC Model 1 may not ' 'have run successfully.') logging.debug(' {} '.format(image.ndvi_toa_raster)) # Only process ag. ETrF pixels ndvi_array[~region_mask] = np.nan ndvi_sub_array = ndvi_array[region_mask] if np.any(ndvi_sub_array): auto_calibration.save_ndvi_histograms(ndvi_sub_array, plots_ws, mc_iter) else: logging.error( '\nERROR: Empty NDVI array, histogram was not built\n') # Place points in suggested region allowing for a number of iterations # dependent on whether or not Ts meets certain criteria logging.info(break_line) pixel_point_iters = 0 while pixel_point_iters <= max_point_iter: if pixel_point_iters == max_point_iter: logging.error('\nERROR: Suitable hot and cold pixels could not be ' 'determined. The scene will not calibrate.\n') return False cold_xy, hot_xy = pixel_points.pixel_points( image_ws, groupsize=groupsize, blocksize=blocksize, mc_iter=mc_iter, shapefile_flag=shapefile_flag, multipoint_flag=multipoint_flag, overwrite_flag=overwrite_flag, pixel_point_iters=pixel_point_iters) if any(x is None for x in cold_xy) or any(x is None for x in hot_xy): logging.error(('\nPixel points coordinates are invalid. ' 'The scene will not calibrate.' '\n Cold: {}\n Hot: {}').format(cold_xy, hot_xy)) return False cold_ts = drigo.raster_value_at_xy(image.ts_raster, cold_xy) hot_ts = drigo.raster_value_at_xy(image.ts_raster, hot_xy) if cold_ts > hot_ts: logging.info( '\nThe cold pixel is hotter than the hot pixel. Placing ' 'the points again.\n') logging.info(break_line) pixel_point_iters += 1 elif abs(hot_ts - cold_ts) < ts_diff_threshold: logging.info(( '\nThere is less than a {} degree difference in Ts hot and cold. ' 'Placing the points again.\n').format(ts_diff_threshold)) logging.info(break_line) pixel_point_iters += 1 # raise et_common.TemperatureError else: break # Adjust Kc hot for soil water balance logging.info(break_line) cal_dict = auto_calibration.hot_kc_swb_adjust(cal_dict, hot_xy, env.snap_osr, image.acq_date, awc_path, etr_ws, etr_re, ppt_ws, ppt_re, spinup_days, min_spinup_days) # Adjust Kc cold based on NDVI # cal_dict['tgt_c_kc'] = auto_calibration.kc_ndvi_adjust( # cal_dict['tgt_c_kc'], cold_xy, ndvi_path, 'Cold') # Check that Kc hot (Ke) is not too high? if cal_dict['hot_tgt_kc'] >= 1.0: logging.error('\nERROR: Target Kc hot is too high for automated ' 'calibration\n ETrF will not be computed') return False elif (cal_dict['cold_tgt_kc'] - cal_dict['hot_tgt_kc']) <= 0.05: logging.error('\nERROR: Target Kc hot and Kc cold are too close for ' 'automated calibration\n ETrF will not be computed') return False # Initialize Kc values at targets cal_dict['kc_cold'] = cal_dict['cold_tgt_kc'] cal_dict['kc_hot'] = cal_dict['hot_tgt_kc'] # Iterate until max calibrations is reached or error is small cal_flag = False cal_iter = 1 while not cal_flag: logging.info(break_line) logging.info('Calibration Iteration: {}'.format(cal_iter)) # Run METRIC Model2 for initial ETrF map logging.info(break_line) metric_model2.metric_model2(image_ws, metric_ini_path, mc_iter=mc_iter, kc_cold=cal_dict['kc_cold'], kc_hot=cal_dict['kc_hot'], cold_xy=cold_xy, hot_xy=hot_xy, overwrite_flag=overwrite_flag) # Read in ETrF array if os.path.isfile(etrf_path): etrf_array = drigo.raster_to_array(etrf_path, return_nodata=False) else: logging.warning( ('WARNING: ETrF raster does not exist. METRIC Model 2 ' 'may not have run successfully.\n {}').format(etrf_path)) break etrf_geo = drigo.raster_path_geo(etrf_path) # Only process ag. ETrF pixels etrf_array[~region_mask] = np.nan etrf_sub_array = etrf_array[np.isfinite(etrf_array)] if not np.any(etrf_sub_array): logging.error( '\nERROR: Empty ETrF array, scene cannot be calibrated\n') break # Calculate calibration parameters logging.debug(break_line) cal_dict = auto_calibration.calibration_params(cal_dict, etrf_sub_array) # Plot intermediates calibration histograms if save_etrf_temp_plots: logging.debug(break_line) auto_calibration.save_etrf_histograms(etrf_sub_array, plots_ws, cal_dict, mc_iter, cal_iter) # Check calibration logging.debug(break_line) cal_flag = auto_calibration.check_calibration(cal_dict) # Don't re-calibrate if initial calibration was suitable if cal_flag: break # Limit calibration attempts # cal_iter index is 1 based for Monte Carlo # cal_iter is 0 for stand alone mode elif cal_iter >= max_cal_iter: logging.info(break_line) logging.info( ('All {} iteration attempts were made, ' 'the scene will not calibrate.').format(max_cal_iter)) if os.path.isfile(etrf_path): os.remove(etrf_path) return False # break # Adjust Kc value of calibration points (instead of moving them) cal_dict = auto_calibration.kc_calibration_adjust( cal_dict, etrf_sub_array) # # Select new calibration points based on ETrF distribution # logging.info(break_line) # cold_xy, hot_xy = auto_calibration.build_pixel_points( # etrf_array, etrf_geo, cal_dict, # shapefile_flag=shapefile_flag, pixels_ws=pixels_ws) del etrf_array, etrf_geo # Increment calibration iteration counter cal_iter += 1 # Only save 'final' results if the scene was calibrated if cal_flag and save_etrf_final_plots: # Plot final ETrF distribution # logging.info(break_line) auto_calibration.save_etrf_histograms(etrf_sub_array, plots_ws, cal_dict, mc_iter, None) # Save final calibration points to database # logging.info(break_line) # calibration_database.save_calibration_points( # image_ws, cal_path, cal_dict, mc_iter, 0) return True
def pixel_points(image_ws, groupsize=1, blocksize=2048, mc_iter=None, shapefile_flag=False, multipoint_flag=False, pixel_point_iters=0, overwrite_flag=None): """Place hot/cold pixels within .\PIXEL_REGIONS\pixel_suggestion.shp Parameters ---------- image_ws : str Image folder path. groupsize : int, optional Script will try to place calibration point randomly into a labeled group of clustered values with at least n pixels. -1 = In the largest group 0 = Anywhere in the image (not currently implemented) 1 >= In any group with a pixel count greater or equal to n blocksize : int, optional Processing block size (the default is 2048). shapefile_flag : bool, optional If True, save calibration points to shapefile (the default is False). multipoing_flag : bool, optional If True, save calibration points to multipoint shapefile (the default is False). pixel_point_iters : int, optional Number of iterations (the default is 0). ovewrite_flag : bool, optional If True, overwrite existing files (the default is None). Returns ------- tuple of cold coordinates, tuple of hot coordinates """ logging.info('Placing hot/cold pixels in suggested regions') env = drigo.env image = et_image.Image(image_ws, env) np.seterr(invalid='ignore') common_ds = drigo.raster_path_ds(image.common_area_raster, read_only=True) env.snap_proj = drigo.raster_ds_proj(common_ds) common_ds = None # Open config file # config = dripy.open_ini(ini_path) # Get input parameters # logging.debug(' Reading Input File') pixels_folder = 'PIXELS' if mc_iter: cold_pixel_name = 'cold_{:02d}'.format(int(mc_iter)) hot_pixel_name = 'hot_{:02d}'.format(int(mc_iter)) else: cold_pixel_name = 'cold' hot_pixel_name = 'hot' hot_cold_pixels_name = 'hot_cold' r_fmt = '.img' s_fmt = '.shp' # json_format = '.geojson' # pixels_folder = dripy.read_param(pixels_folder, 'PIXELS', config) # cold_pixel_name = dripy.read_param(cold_pixel_name, 'cold', config) # hot_pixel_name = dripy.read_param(hot_pixel_name, 'hot', config) # Create Pixels Folder and Scratch Folder pixels_ws = os.path.join(image_ws, pixels_folder) region_ws = os.path.join(image_ws, 'PIXEL_REGIONS') if not os.path.isdir(pixels_ws): os.mkdir(pixels_ws) # Generate pixels shapefiles if they don't exist cold_pixel_path = os.path.join(pixels_ws, cold_pixel_name + s_fmt) hot_pixel_path = os.path.join(pixels_ws, hot_pixel_name + s_fmt) hot_cold_pixel_path = os.path.join(pixels_ws, hot_cold_pixels_name + s_fmt) if shapefile_flag and overwrite_flag: dripy.remove_file(cold_pixel_path) dripy.remove_file(hot_pixel_path) # dripy.remove_file(hot_cold_pixel_path) # Place points in the suggested pixel location raster cold_region_raster = os.path.join(region_ws, 'cold_pixel_suggestion' + r_fmt) hot_region_raster = os.path.join(region_ws, 'hot_pixel_suggestion' + r_fmt) if not os.path.isfile(cold_region_raster): logging.error('\nERROR: The cold pixel suggestion raster {} does ' 'not exist\n'.format( os.path.basename(cold_region_raster))) sys.exit() if not os.path.isfile(hot_region_raster): logging.error('\nERROR: The hot pixel suggestion raster {} does ' 'not exist\n'.format( os.path.basename(hot_region_raster))) sys.exit() # Check placement_mode value # Make sure it is between -1 and max pixelcount? # Pixel placement mode logging.info('Calibration point placement method:') if type(groupsize) is not int: logging.error('\nGroupsize must be an integer\n') sys.exit() elif groupsize <= -1: logging.info(' Randomly within largest suggested region polygon') elif groupsize == 0: logging.info(' Randomly anywhere in the image') sys.exit() elif groupsize >= 1: logging.info(' Randomly within suggested region polygons with ' 'more than {} pixels'.format(groupsize)) # Select random pixel cold_x, cold_y = get_random_point_in_raster(cold_region_raster, groupsize, blocksize) hot_x, hot_y = get_random_point_in_raster(hot_region_raster, groupsize, blocksize) # Save pixels if shapefile_flag and cold_x and cold_y: drigo.save_point_to_shapefile(cold_pixel_path, cold_x, cold_y, env.snap_proj) if shapefile_flag and hot_x and hot_y: drigo.save_point_to_shapefile(hot_pixel_path, hot_x, hot_y, env.snap_proj) if multipoint_flag and cold_x and cold_y: drigo.multipoint_shapefile(hot_cold_pixel_path, cold_x, cold_y, 'COLD_{:02d}_{:02d}'.format( int(mc_iter), int(pixel_point_iters)), id_=mc_iter, input_proj=env.snap_proj) if multipoint_flag and hot_x and hot_y: drigo.multipoint_shapefile(hot_cold_pixel_path, hot_x, hot_y, 'HOT_{:02d}_{:02d}'.format( int(mc_iter), int(pixel_point_iters)), id_=mc_iter, input_proj=env.snap_proj) # Eventually don't save a shapefile and just return the coordinates return (cold_x, cold_y), (hot_x, hot_y)