Beispiel #1
0
class YMBCrossCorrel(HasTraits):

    data = Instance(IYMBData)

    # convert the dictionary keys to an ordered list.
    var_name_list = Property(List)

    @cached_property
    def _get_var_name_list(self):
        return sorted(var_dict.keys())

    # list of data arrays in the order of the var_name_list
    var_arr_list = Property(List, depends_on='data.input_change')

    @cached_property
    def _get_var_arr_list(self):
        return [
            getattr(self.data, var_dict[var_name]).flatten()[:, None]
            for var_name in self.var_name_list
        ]

    corr_arr = Property(Array, depends_on='data.input_change')

    @cached_property
    def _get_corr_arr(self):
        print 'redrawing cross correl'
        # get the list of names and sort them alphabetically
        corr_data = ma.hstack(self.var_arr_list)
        # @kelidas: return small differences between ma and numpy corrcoef
        # return ma.corrcoef( corr_data, rowvar = False, allow_masked = True )
        return MatSpearman(corr_data)

    figure = Instance(Figure)

    def _figure_default(self):
        figure = Figure()
        figure.add_axes([0.1, 0.1, 0.8, 0.8])
        return figure

    data_changed = Event(True)

    @on_trait_change('data, data.input_change')
    def _redraw(self):
        figure = self.figure
        figure.clear()
        var_data = self.corr_arr

        figure.add_axes([0.1, 0.1, 0.8, 0.8])
        axes = figure.axes[0]
        axes.clear()
        x_coor = arange(var_data.shape[1])
        axes.grid()
        for i in range(0, var_data.shape[1]):
            axes.plot(x_coor[i:] - x_coor[i], var_data[i, (i):], '-x')
        axes.set_xlabel('$\mathrm{x}\, [\mu\mathrm{m}]$', fontsize=16)
        axes.set_ylabel('$\mathrm{correlation}$', fontsize=16)
        axes.set_ylim(-1, 1)

        self.data_changed = True

    traits_view_mpl = View(
        Group(
            #                       Group( Item( 'figure', style = 'custom',
            #                              editor = MPLFigureEditor(),
            #                              show_label = False )
            #                              , id = 'figure.view' ),
            Item('corr_arr',
                 show_label=False,
                 style='readonly',
                 editor=TabularEditor(adapter=ArrayAdapter()))),
        resizable=True,
    )

    traits_view = View(Item('corr_arr',
                            editor=tabular_editor,
                            show_label=False),
                       resizable=True,
                       scrollable=True,
                       buttons=['OK', 'Cancel'],
                       width=1.0,
                       height=0.5)
Beispiel #2
0
class RFView3D(ModelView):

    model = Instance(IRF)

    scalar_arr = Property(depends_on='var_enum')

    @cached_property
    def _get_scalar_arr(self):
        return getattr(self.data, self.var_enum_)

    color_map = Str('blue-red')

    scene = Instance(MlabSceneModel, ())
    plot = Instance(PipelineBase)

    # When the scene is activated or parameters change the scene is updated
    @on_trait_change('model.')
    def update_plot(self):

        x_arrr, y_arrr, z_arrr = self.data.cut_data[0:3]
        scalar_arrr = self.scalar_arr

        mask = y_arrr > -1

        x = x_arrr[mask]
        y = y_arrr[mask]
        z = z_arrr[mask]
        scalar = scalar_arrr[mask]

        connections = -ones_like(x_arrr)
        mesk = x_arrr.filled() > -1
        connections[mesk] = list(range(0, len(connections[mesk])))
        connections = connections[self.start_fib:self.end_fib + 1, :].filled()
        connection = connections.astype(int).copy()
        connection = connection.tolist()

        # TODO: better
        for i in range(0, self.data.n_cols + 1):
            for item in connection:
                try:
                    item.remove(-1)
                except:
                    pass

        if self.plot is None:
            print('plot 3d -- 1')
            #self.scene.parallel_projection = False
            pts = self.scene.mlab.pipeline.scalar_scatter(
                array(x), array(y), array(z), array(scalar))
            pts.mlab_source.dataset.lines = connection
            self.plot = self.scene.mlab.pipeline.surface(
                self.scene.mlab.pipeline.tube(
                    #                        fig.scene.mlab.pipeline.stripper(
                    pts,
                    figure=self.scene.mayavi_scene,
                    #                        ),
                    tube_sides=10,
                    tube_radius=0.015,
                ), )
            self.plot.actor.mapper.interpolate_scalars_before_mapping = True
            self.plot.module_manager.scalar_lut_manager.show_scalar_bar = True
            self.plot.module_manager.scalar_lut_manager.show_legend = True
            self.plot.module_manager.scalar_lut_manager.shadow = True
            self.plot.module_manager.scalar_lut_manager.label_text_property.italic = False

            self.plot.module_manager.scalar_lut_manager.scalar_bar.orientation = 'horizontal'
            self.plot.module_manager.scalar_lut_manager.scalar_bar_representation.position2 = array(
                [0.61775334, 0.17])
            self.plot.module_manager.scalar_lut_manager.scalar_bar_representation.position = array(
                [0.18606834, 0.08273163])
            self.plot.module_manager.scalar_lut_manager.scalar_bar.width = 0.17000000000000004

            self.plot.module_manager.scalar_lut_manager.lut_mode = self.color_map  #'black-white'
            self.plot.module_manager.scalar_lut_manager.data_name = self.var_enum
            self.plot.module_manager.scalar_lut_manager.label_text_property.font_family = 'times'
            self.plot.module_manager.scalar_lut_manager.label_text_property.shadow = True
            self.plot.module_manager.scalar_lut_manager.title_text_property.color = (
                0.0, 0.0, 0.0)
            self.plot.module_manager.scalar_lut_manager.label_text_property.color = (
                0.0, 0.0, 0.0)
            self.plot.module_manager.scalar_lut_manager.title_text_property.font_family = 'times'
            self.plot.module_manager.scalar_lut_manager.title_text_property.shadow = True

            #fig.scene.parallel_projection = True
            self.scene.scene.background = (1.0, 1.0, 1.0)
            self.scene.scene.camera.position = [
                16.319534155794827, 10.477447863842627, 6.1717943847883232
            ]
            self.scene.scene.camera.focal_point = [
                3.8980860486356859, 2.4731178194274621, 0.14856957086692035
            ]
            self.scene.scene.camera.view_angle = 30.0
            self.scene.scene.camera.view_up = [
                -0.27676100729835512, -0.26547169369097656, 0.92354107904740446
            ]
            self.scene.scene.camera.clipping_range = [
                7.7372124315754673, 26.343575352248056
            ]
            self.scene.scene.camera.compute_view_plane_normal()
            #fig.scene.reset_zoom()

            axes = Axes()
            self.scene.engine.add_filter(axes, self.plot)
            axes.label_text_property.font_family = 'times'
            axes.label_text_property.shadow = True
            axes.title_text_property.font_family = 'times'
            axes.title_text_property.shadow = True
            axes.property.color = (0.0, 0.0, 0.0)
            axes.title_text_property.color = (0.0, 0.0, 0.0)
            axes.label_text_property.color = (0.0, 0.0, 0.0)
            axes.axes.corner_offset = .1
            axes.axes.x_label = 'x'
            axes.axes.y_label = 'y'
            axes.axes.z_label = 'z'
        else:
            print('plot 3d -- 2')
            #self.plot.mlab_source.dataset.reset()
            #self.plot.mlab_source.set( x = x, y = y, z = z, scalars = scalar )
            #self.plot.mlab_source.dataset.points = array( [x, y, z] ).T
            self.plot.mlab_source.scalars = scalar
            self.plot.mlab_source.dataset.lines = connection
            self.plot.module_manager.scalar_lut_manager.data_name = self.var_enum

    # The layout of the dialog created
    view = View(
        Item('scene',
             editor=SceneEditor(scene_class=MayaviScene),
             height=250,
             width=300,
             show_label=False),
        Group(
            '_',
            'start_fib',
            'end_fib',
            'var_enum',
        ),
        resizable=True,
    )
Beispiel #3
0
class SimCrackLoc(IBVModel):
    '''Model assembling the components for studying the restrained crack localization.
    '''

    geo_transform = Instance(FlawCenteredGeoTransform)

    def _geo_transform_default(self):
        return FlawCenteredGeoTransform()

    shape = Int(10,
                desc='Number of finite elements',
                ps_levsls=(10, 40, 4),
                input=True)

    length = Float(1000,
                   desc='Length of the simulated region',
                   unit='mm',
                   input=True)

    flaw_position = Float(500, input=True, unit='mm')

    flaw_radius = Float(100, input=True, unit='mm')

    reduction_factor = Float(0.9, input=True)

    elastic_fraction = Float(0.9, input=True)

    avg_radius = Float(400, input=True, unit='mm')

    # tensile strength of concrete
    f_m_t = Float(3.0, input=True, unit='MPa')

    epsilon_0 = Property(unit='-')

    def _get_epsilon_0(self):
        return self.f_m_t / self.E_m

    epsilon_f = Float(10, input=True, unit='-')

    h_m = Float(10, input=True, unit='mm')

    b_m = Float(8, input=True, unit='mm')

    A_m = Property(unit='m^2')

    def _get_A_m(self):
        return self.b_m * self.h_m

    E_m = Float(30.0e5, input=True, unit='MPa')

    E_f = Float(70.0e6, input=True, unit='MPa')

    A_f = Float(1.0, input=True, unit='mm^2')

    s_crit = Float(0.009, input=True, unit='mm')

    P_f = Property(depends_on='+input')

    @cached_property
    def _get_P_f(self):
        return sqrt(4 * self.A_f * pi)

    K_b = Property(depends_on='+input')

    @cached_property
    def _get_K_b(self):
        return self.T_max / self.s_crit

    tau_max = Float(0.0, input=True, unit='MPa')

    T_max = Property(depends_on='+input', unit='N/mm')

    @cached_property
    def _get_T_max(self):
        return self.tau_max * self.P_f

    rho = Property(depends_on='+input')

    @cached_property
    def _get_rho(self):
        return self.A_f / (self.A_f + self.A_m)

    #-------------------------------------------------------
    # Material model for the matrix
    #-------------------------------------------------------
    mats_m = Property(Instance(MATS1DDamageWithFlaw), depends_on='+input')

    @cached_property
    def _get_mats_m(self):
        mats_m = MATS1DDamageWithFlaw(E=self.E_m * self.A_m,
                                      flaw_position=self.flaw_position,
                                      flaw_radius=self.flaw_radius,
                                      reduction_factor=self.reduction_factor,
                                      epsilon_0=self.epsilon_0,
                                      epsilon_f=self.epsilon_f)
        return mats_m

    mats_f = Instance(MATS1DElastic)

    def _mats_f_default(self):
        mats_f = MATS1DElastic(E=self.E_f * self.A_f)
        return mats_f

    mats_b = Instance(MATS1DEval)

    def _mats_b_default(self):
        mats_b = MATS1DElastic(E=self.K_b)
        mats_b = MATS1DPlastic(E=self.K_b,
                               sigma_y=self.T_max,
                               K_bar=0.,
                               H_bar=0.)  # plastic function of slip
        return mats_b

    mats_fb = Property(Instance(MATS1D5Bond), depends_on='+input')

    @cached_property
    def _get_mats_fb(self):

        # Material model construction
        return MATS1D5Bond(
            mats_phase1=MATS1DElastic(E=0),
            mats_phase2=self.mats_f,
            mats_ifslip=self.mats_b,
            mats_ifopen=MATS1DElastic(
                E=0)  # elastic function of open - inactive
        )

    #-------------------------------------------------------
    # Finite element type
    #-------------------------------------------------------
    fets_m = Property(depends_on='+input')

    @cached_property
    def _get_fets_m(self):
        fets_eval = FETS1D2L(mats_eval=self.mats_m)
        #fets_eval = FETS1D2L3U( mats_eval = self.mats_m )
        return fets_eval

    fets_fb = Property(depends_on='+input')

    @cached_property
    def _get_fets_fb(self):
        return FETS1D52L4ULRH(mats_eval=self.mats_fb)
        #return FETS1D52L6ULRH( mats_eval = self.mats_fb )
        #return FETS1D52L8ULRH( mats_eval = self.mats_fb )

    #--------------------------------------------------------------------------------------
    # Mesh integrator
    #--------------------------------------------------------------------------------------
    fe_domain_structure = Property(depends_on='+input')

    @cached_property
    def _get_fe_domain_structure(self):
        '''Root of the domain hierarchy
        '''
        elem_length = self.length / float(self.shape)

        fe_domain = FEDomain()

        fe_m_level = FERefinementGrid(name='matrix domain',
                                      domain=fe_domain,
                                      fets_eval=self.fets_m)

        fe_grid_m = FEGrid(name='matrix grid',
                           coord_max=(self.length, ),
                           shape=(self.shape, ),
                           level=fe_m_level,
                           fets_eval=self.fets_m,
                           geo_transform=self.geo_transform)

        fe_fb_level = FERefinementGrid(name='fiber bond domain',
                                       domain=fe_domain,
                                       fets_eval=self.fets_fb)

        fe_grid_fb = FEGrid(coord_min=(0., length / 5.),
                            coord_max=(length, 0.),
                            shape=(self.shape, 1),
                            level=fe_fb_level,
                            fets_eval=self.fets_fb,
                            geo_transform=self.geo_transform)

        return fe_domain, fe_grid_m, fe_grid_fb, fe_m_level, fe_fb_level

    fe_domain = Property

    def _get_fe_domain(self):
        return self.fe_domain_structure[0]

    fe_grid_m = Property

    def _get_fe_grid_m(self):
        return self.fe_domain_structure[1]

    fe_grid_fb = Property

    def _get_fe_grid_fb(self):
        return self.fe_domain_structure[2]

    fe_m_level = Property

    def _get_fe_m_level(self):
        return self.fe_domain_structure[3]

    fe_fb_level = Property

    def _get_fe_fb_level(self):
        return self.fe_domain_structure[4]

    #---------------------------------------------------------------------------
    # Load scaling adapted to the elastic and inelastic regime
    #---------------------------------------------------------------------------
    final_displ = Property(depends_on='+input')

    @cached_property
    def _get_final_displ(self):
        damage_onset_displ = self.mats_m.epsilon_0 * self.length
        return damage_onset_displ / self.elastic_fraction

    step_size = Property(depends_on='+input')

    @cached_property
    def _get_step_size(self):
        n_steps = self.n_steps
        return 1.0 / float(n_steps)

    time_function = Property(depends_on='+input')

    @cached_property
    def _get_time_function(self):
        '''Get the time function so that the elastic regime 
        is skipped in a single step.
        '''
        step_size = self.step_size

        elastic_value = self.elastic_fraction * 0.98 * self.reduction_factor
        inelastic_value = 1.0 - elastic_value

        def ls(t):
            if t <= step_size:
                return (elastic_value / step_size) * t
            else:
                return elastic_value + (t - step_size) * (inelastic_value) / (
                    1 - step_size)

        return ls

    def plot_time_function(self, p):
        '''Plot the time function.
        '''
        n_steps = self.n_steps
        mats = self.mats
        step_size = self.step_size

        ls_t = linspace(0, step_size * n_steps, n_steps + 1)
        ls_fn = frompyfunc(self.time_function, 1, 1)
        ls_v = ls_fn(ls_t)

        p.subplot(321)
        p.plot(ls_t, ls_v, 'ro-')

        final_epsilon = self.final_displ / self.length

        kappa = linspace(mats.epsilon_0, final_epsilon, 10)
        omega_fn = frompyfunc(lambda kappa: mats._get_omega(None, kappa), 1, 1)
        omega = omega_fn(kappa)
        kappa_scaled = (step_size + (1 - step_size) *
                        (kappa - mats.epsilon_0) /
                        (final_epsilon - mats.epsilon_0))
        xdata = hstack([array([0.0], dtype=float), kappa_scaled])
        ydata = hstack([array([0.0], dtype=float), omega])
        p.plot(xdata, ydata, 'g')
        p.xlabel('regular time [-]')
        p.ylabel('scaled time [-]')

    run = Button

    @on_trait_change('run')
    def peval(self):
        '''Evaluation procedure.
        '''
        #mv = MATS1DDamageView( model = mats_eval )
        #mv.configure_traits()

        right_dof_m = self.fe_grid_m[-1, -1].dofs[0, 0, 0]

        right_dof_fb = self.fe_grid_fb[-1, -1, -1, -1].dofs[0, 0, 0]
        # Response tracers
        A = self.A_m + self.A_f
        self.sig_eps_m = RTraceGraph(name='F_u_m',
                                     var_y='F_int',
                                     idx_y=right_dof_m,
                                     var_x='U_k',
                                     idx_x=right_dof_m,
                                     transform_y='y / %g' % A)

        # Response tracers
        self.sig_eps_f = RTraceGraph(name='F_u_f',
                                     var_y='F_int',
                                     idx_y=right_dof_fb,
                                     var_x='U_k',
                                     idx_x=right_dof_fb,
                                     transform_y='y / %g' % A)

        self.eps_m_field = RTraceDomainListField(name='eps_m',
                                                 position='int_pnts',
                                                 var='eps_app',
                                                 warp=False)

        self.eps_f_field = RTraceDomainListField(name='eps_f',
                                                 position='int_pnts',
                                                 var='mats_phase2_eps_app',
                                                 warp=False)
        # Response tracers
        self.sig_m_field = RTraceDomainListField(name='sig_m',
                                                 position='int_pnts',
                                                 var='sig_app')

        self.sig_f_field = RTraceDomainListField(name='sig_f',
                                                 position='int_pnts',
                                                 var='mats_phase2_sig_app')

        self.omega_m_field = RTraceDomainListField(name='omega_m',
                                                   position='int_pnts',
                                                   var='omega',
                                                   warp=False)

        self.shear_flow_field = RTraceDomainListField(name='shear flow',
                                                      position='int_pnts',
                                                      var='shear_flow',
                                                      warp=False)

        self.slip_field = RTraceDomainListField(name='slip',
                                                position='int_pnts',
                                                var='slip',
                                                warp=False)

        avg_processor = None
        if self.avg_radius > 0.0:
            n_dofs = self.fe_domain.n_dofs
            avg_processor = RTUAvg(sd=self.fe_m_level,
                                   n_dofs=n_dofs,
                                   avg_fn=QuarticAF(radius=self.avg_radius))

        ts = TStepper(
            u_processor=avg_processor,
            dof_resultants=True,
            sdomain=self.fe_domain,
            bcond_list=[  # define the left clamping 
                BCSlice(var='u',
                        value=0.,
                        dims=[0],
                        slice=self.fe_grid_fb[0, 0, 0, :]),
                #                                BCSlice( var = 'u', value = 0., dims = [0], slice = self.fe_grid_m[ 0, 0 ] ),
                # loading at the right edge
                #                                 BCSlice( var = 'f', value = 1, dims = [0], slice = domain[-1, -1, -1, 0],
                #                                         time_function = ls ),
                BCSlice(var='u',
                        value=self.final_displ,
                        dims=[0],
                        slice=self.fe_grid_fb[-1, -1, -1, :],
                        time_function=self.time_function),
                #                                 BCSlice( var = 'u', value = self.final_displ, dims = [0], slice = self.fe_grid_m[-1, -1],
                #                                         time_function = self.time_function ),
                # fix horizontal displacement in the top layer
                #                                 BCSlice( var = 'u', value = 0., dims = [0], slice = domain[:, -1, :, -1] ),
                # fix the vertical displacement all over the domain
                BCSlice(var='u',
                        value=0.,
                        dims=[1],
                        slice=self.fe_grid_fb[:, :, :, :]),
                #                            # Connect bond and matrix domains
                BCDofGroup(var='u',
                           value=0.,
                           dims=[0],
                           get_link_dof_method=self.fe_grid_fb.get_bottom_dofs,
                           get_dof_method=self.fe_grid_m.get_all_dofs,
                           link_coeffs=[1.])
            ],
            rtrace_list=[
                self.sig_eps_m,
                self.sig_eps_f,
                self.eps_m_field,
                self.eps_f_field,
                self.sig_m_field,
                self.sig_f_field,
                self.omega_m_field,
                self.shear_flow_field,
                self.slip_field,
            ])

        # Add the time-loop control
        tloop = TLoop(tstepper=ts,
                      KMAX=300,
                      tolerance=1e-5,
                      debug=False,
                      verbose_iteration=True,
                      verbose_time=False,
                      tline=TLine(min=0.0, step=self.step_size, max=1.0))

        tloop.on_accept_time_step = self.plot

        U = tloop.eval()

        self.sig_eps_f.refresh()
        max_sig_m = max(self.sig_eps_m.trace.ydata)
        return array([U[right_dof_m], max_sig_m], dtype='float_')

    #--------------------------------------------------------------------------------------
    # Tracers
    #--------------------------------------------------------------------------------------

    def plot_sig_eps(self, p):
        p.set_xlabel('control displacement [mm]')
        p.set_ylabel('stress [MPa]')

        self.sig_eps_m.refresh()
        self.sig_eps_m.trace.plot(p, 'o-')

        self.sig_eps_f.refresh()
        self.sig_eps_f.trace.plot(p, 'o-')

        p.plot(self.sig_eps_m.trace.xdata,
               self.sig_eps_m.trace.ydata + self.sig_eps_f.trace.ydata, 'o-')

    def plot_eps(self, p):
        eps_m = self.eps_m_field.subfields[0]
        xdata = eps_m.vtk_X[:, 0]
        ydata = eps_m.field_arr[:, 0, 0]
        idata = argsort(xdata)
        p.plot(xdata[idata], ydata[idata], 'o-')

        eps_f = self.eps_f_field.subfields[1]
        xdata = eps_f.vtk_X[:, 0]
        ydata = eps_f.field_arr[:, 0, 0]
        idata = argsort(xdata)
        p.plot(xdata[idata], ydata[idata], 'o-')

        p.set_ylim(ymin=0)
        p.set_xlabel('bar axis [mm]')
        p.set_ylabel('strain [-]')

    def plot_omega(self, p):
        omega_m = self.omega_m_field.subfields[0]
        xdata = omega_m.vtk_X[:, 0]
        ydata = omega_m.field_arr[:]
        idata = argsort(xdata)
        p.fill(xdata[idata], ydata[idata], facecolor='gray', alpha=0.2)

        print 'max omega', max(ydata[idata])

        p.set_ylim(ymin=0, ymax=1.0)
        p.set_xlabel('bar axis [mm]')
        p.set_ylabel('omega [-]')

    def plot_sig(self, p):
        sig_m = self.sig_m_field.subfields[0]
        xdata = sig_m.vtk_X[:, 0]
        ydata = sig_m.field_arr[:, 0, 0]
        idata = argsort(xdata)
        ymax = max(ydata)
        p.plot(xdata[idata], ydata[idata], 'o-')

        sig_f = self.sig_f_field.subfields[1]
        xdata = sig_f.vtk_X[:, 0]
        ydata = sig_f.field_arr[:, 0, 0]
        idata = argsort(xdata)
        p.plot(xdata[idata], ydata[idata], 'o-')

        xdata = sig_f.vtk_X[:, 0]
        ydata = sig_f.field_arr[:, 0, 0] + sig_m.field_arr[:, 0, 0]
        p.plot(xdata[idata], ydata[idata], 'ro-')

        p.set_ylim(ymin=0)  # , ymax = 1.2 * ymax )
        p.set_xlabel('bar axis [mm]')
        p.set_ylabel('stress [MPa]')

    def plot_shear_flow(self, p):
        shear_flow = self.shear_flow_field.subfields[1]
        xdata = shear_flow.vtk_X[:, 0]
        ydata = shear_flow.field_arr[:, 0] / self.P_f
        idata = argsort(xdata)
        ymax = max(ydata)
        p.plot(xdata[idata], ydata[idata], 'o-')

        p.set_xlabel('bar axis [mm]')
        p.set_ylabel('shear flow [N/m]')

    def plot_slip(self, p):
        slip = self.slip_field.subfields[1]
        xdata = slip.vtk_X[:, 0]
        ydata = slip.field_arr[:, 0]
        idata = argsort(xdata)
        ymax = max(ydata)
        p.plot(xdata[idata], ydata[idata], 'ro-')

        p.set_xlabel('bar axis [mm]')
        p.set_ylabel('slip [N/m]')

    def plot_tracers(self, p=p):

        p.subplot(221)
        self.plot_sig_eps(p)

        p.subplot(223)
        self.plot_eps(p)

        p.subplot(224)
        self.plot_sig(p)

    #---------------------------------------------------------------
    # PLOT OBJECT
    #-------------------------------------------------------------------
    figure_ld = Instance(Figure)

    def _figure_ld_default(self):
        figure = Figure(facecolor='white')
        figure.add_axes([0.12, 0.13, 0.85, 0.74])
        return figure

    #---------------------------------------------------------------
    # PLOT OBJECT
    #-------------------------------------------------------------------
    figure_eps = Instance(Figure)

    def _figure_eps_default(self):
        figure = Figure(facecolor='white')
        figure.add_axes([0.12, 0.13, 0.85, 0.74])
        return figure

    #---------------------------------------------------------------
    # PLOT OBJECT
    #-------------------------------------------------------------------
    figure_shear_flow = Instance(Figure)

    def _figure_shear_flow_default(self):
        figure = Figure(facecolor='white')
        figure.add_axes([0.12, 0.13, 0.85, 0.74])
        return figure

    #---------------------------------------------------------------
    # PLOT OBJECT
    #-------------------------------------------------------------------
    figure_sig = Instance(Figure)

    def _figure_sig_default(self):
        figure = Figure(facecolor='white')
        figure.add_axes([0.12, 0.13, 0.85, 0.74])
        return figure

    #---------------------------------------------------------------
    # PLOT OBJECT
    #-------------------------------------------------------------------
    figure_shear_flow = Instance(Figure)

    def _figure_shear_flow_default(self):
        figure = Figure(facecolor='white')
        figure.add_axes([0.12, 0.13, 0.85, 0.74])
        return figure

    def plot(self):

        self.figure_ld.clear()
        ax = self.figure_ld.gca()
        self.plot_sig_eps(ax)

        self.figure_eps.clear()
        ax = self.figure_eps.gca()
        self.plot_eps(ax)
        ax2 = ax.twinx()
        self.plot_omega(ax2)

        self.figure_sig.clear()
        ax = self.figure_sig.gca()
        self.plot_sig(ax)
        ax2 = ax.twinx()
        self.plot_omega(ax2)

        self.figure_shear_flow.clear()
        ax = self.figure_shear_flow.gca()
        self.plot_shear_flow(ax)
        ax2 = ax.twinx()
        self.plot_slip(ax2)

        self.data_changed = True

    def get_sim_outputs(self):
        '''
        Specifies the results and their order returned by the model
        evaluation.
        '''
        return [
            SimOut(name='right end displacement', unit='m'),
            SimOut(name='peak load', uni='MPa')
        ]

    data_changed = Event

    toolbar = ToolBar(Action(name="Run",
                             tooltip='Start computation',
                             image=ImageResource('kt-start'),
                             action="start_study"),
                      Action(name="Pause",
                             tooltip='Pause computation',
                             image=ImageResource('kt-pause'),
                             action="pause_study"),
                      Action(name="Stop",
                             tooltip='Stop computation',
                             image=ImageResource('kt-stop'),
                             action="stop_study"),
                      image_size=(32, 32),
                      show_tool_names=False,
                      show_divider=True,
                      name='view_toolbar'),

    traits_view = View(HSplit(
        VSplit(
            Item('run', show_label=False),
            VGroup(
                Item('shape'),
                Item('n_steps'),
                Item('length'),
                label='parameters',
                id='crackloc.viewmodel.factor.geometry',
                dock='tab',
                scrollable=True,
            ),
            VGroup(Item('E_m'),
                   Item('f_m_t'),
                   Item('avg_radius'),
                   Item('h_m'),
                   Item('b_m'),
                   Item('A_m', style='readonly'),
                   Item('mats_m', show_label=False),
                   label='Matrix',
                   dock='tab',
                   id='crackloc.viewmodel.factor.matrix',
                   scrollable=True),
            VGroup(Item('E_f'),
                   Item('A_f'),
                   Item('mats_f', show_label=False),
                   label='Fiber',
                   dock='tab',
                   id='crackloc.viewmodel.factor.fiber',
                   scrollable=True),
            VGroup(Group(
                Item('tau_max'),
                Item('s_crit'),
                Item('P_f', style='readonly', show_label=True),
                Item('K_b', style='readonly', show_label=True),
                Item('T_max', style='readonly', show_label=True),
            ),
                   Item('mats_b', show_label=False),
                   label='Bond',
                   dock='tab',
                   id='crackloc.viewmodel.factor.bond',
                   scrollable=True),
            VGroup(Item('rho', style='readonly', show_label=True),
                   label='Composite',
                   dock='tab',
                   id='crackloc.viewmodel.factor.jcomposite',
                   scrollable=True),
            id='crackloc.viewmodel.left',
            label='studied factors',
            layout='tabbed',
            dock='tab',
        ),
        VSplit(
            VGroup(
                Item('figure_ld',
                     editor=MPLFigureEditor(),
                     resizable=True,
                     show_label=False),
                label='stress-strain',
                id='crackloc.viewmode.figure_ld_window',
                dock='tab',
            ),
            VGroup(
                Item('figure_eps',
                     editor=MPLFigureEditor(),
                     resizable=True,
                     show_label=False),
                label='strains profile',
                id='crackloc.viewmode.figure_eps_window',
                dock='tab',
            ),
            VGroup(
                Item('figure_sig',
                     editor=MPLFigureEditor(),
                     resizable=True,
                     show_label=False),
                label='stress profile',
                id='crackloc.viewmode.figure_sig_window',
                dock='tab',
            ),
            VGroup(
                Item('figure_shear_flow',
                     editor=MPLFigureEditor(),
                     resizable=True,
                     show_label=False),
                label='bond shear and slip profiles',
                id='crackloc.viewmode.figure_shear_flow_window',
                dock='tab',
            ),
            id='crackloc.viewmodel.right',
        ),
        id='crackloc.viewmodel.splitter',
    ),
                       title='SimVisage Component: Crack localization',
                       id='crackloc.viewmodel',
                       dock='tab',
                       resizable=True,
                       height=0.8,
                       width=0.8,
                       buttons=[OKButton])
Beispiel #4
0
class CBView(ModelView):
    def __init__(self, **kw):
        super(CBView, self).__init__(**kw)
        self.on_trait_change(self.refresh, 'model.+params')
        self.refresh()

    model = Instance(Model)

    figure = Instance(Figure)

    def _figure_default(self):
        figure = Figure(facecolor='white')
        return figure

    figure2 = Instance(Figure)

    def _figure2_default(self):
        figure = Figure(facecolor='white')
        return figure

    data_changed = Event

    def plot(self, fig, fig2):
        figure = fig
        figure.clear()
        axes = figure.gca()
        # plot PDF
        axes.plot(self.model.w, self.model.model_rand, lw=2.0, color='blue', \
                  label='model')
        axes.plot(self.model.w, self.model.interpolate_experiment(self.model.w), lw=1.0, color='black', \
                  label='experiment')
        axes.legend(loc='best')


#         figure2 = fig2
#         figure2.clear()
#         axes = figure2.gca()
#         # plot PDF
#         axes.plot(self.model.w2, self.model.model_extrapolate, lw=2.0, color='red', \
#                   label='model')
#         axes.legend()

    def refresh(self):
        self.plot(self.figure, self.figure2)
        self.data_changed = True

    traits_view = View(HSplit(VGroup(
        Group(
            Item('model.tau_scale'),
            Item('model.tau_shape'),
            Item('model.tau_loc'),
            Item('model.m'),
            Item('model.sV0'),
            Item('model.Ef'),
            Item('model.w_min'),
            Item('model.w_max'),
            Item('model.w_pts'),
            Item('model.n_int'),
            Item('model.w2_min'),
            Item('model.w2_max'),
            Item('model.w2_pts'),
            Item('model.sigmamu'),
        ),
        id='pdistrib.distr_type.pltctrls',
        label='Distribution parameters',
        scrollable=True,
    ),
                              Tabbed(
                                  Group(
                                      Item('figure',
                                           editor=MPLFigureEditor(),
                                           show_label=False,
                                           resizable=True),
                                      scrollable=True,
                                      label='Plot',
                                  ),
                                  label='Plot',
                                  id='pdistrib.figure.params',
                                  dock='tab',
                              ),
                              Tabbed(
                                  Group(
                                      Item('figure2',
                                           editor=MPLFigureEditor(),
                                           show_label=False,
                                           resizable=True),
                                      scrollable=True,
                                      label='Plot',
                                  ),
                                  label='Plot',
                                  id='pdistrib.figure2',
                                  dock='tab',
                              ),
                              dock='tab',
                              id='pdistrib.figure.view'),
                       id='pdistrib.view',
                       dock='tab',
                       title='Statistical distribution',
                       buttons=[OKButton, CancelButton],
                       scrollable=True,
                       resizable=True,
                       width=600,
                       height=400)
Beispiel #5
0
class PDistrib(HasTraits):

    implements = IPDistrib

    def __init__(self, **kw):
        super(PDistrib, self).__init__(**kw)
        self.on_trait_change(self.refresh,
                             'distr_type.changed,quantile,n_segments')
        self.refresh()

    # puts all chosen continuous distributions distributions defined
    # in the scipy.stats.distributions module as a list of strings
    # into the Enum trait
    # distr_choice = Enum(distr_enum)

    distr_choice = Enum('sin2x', 'weibull_min', 'sin_distr', 'uniform', 'norm',
                        'piecewise_uniform', 'gamma')
    distr_dict = {
        'sin2x': sin2x,
        'uniform': uniform,
        'norm': norm,
        'weibull_min': weibull_min,
        'sin_distr': sin_distr,
        'piecewise_uniform': piecewise_uniform,
        'gamma': gamma
    }

    # instantiating the continuous distributions
    distr_type = Property(Instance(Distribution), depends_on='distr_choice')

    @cached_property
    def _get_distr_type(self):
        return Distribution(self.distr_dict[self.distr_choice])

    # change monitor - accumulate the changes in a single event trait
    changed = Event

    @on_trait_change('distr_choice, distr_type.changed, quantile, n_segments')
    def _set_changed(self):
        self.changed = True

    #------------------------------------------------------------------------
    # Methods setting the statistical modments
    #------------------------------------------------------------------------
    mean = Property

    def _get_mean(self):
        return self.distr_type.mean

    def _set_mean(self, value):
        self.distr_type.mean = value

    variance = Property

    def _get_variance(self):
        return self.distr_type.mean

    def _set_variance(self, value):
        self.distr_type.mean = value

    #------------------------------------------------------------------------
    # Methods preparing visualization
    #------------------------------------------------------------------------

    quantile = Float(1e-14, auto_set=False, enter_set=True)
    range = Property(Tuple(Float), depends_on=\
                      'distr_type.changed, quantile')

    @cached_property
    def _get_range(self):
        return (self.distr_type.distr.ppf(self.quantile),
                self.distr_type.distr.ppf(1 - self.quantile))

    n_segments = Int(500, auto_set=False, enter_set=True)

    dx = Property(Float, depends_on=\
                      'distr_type.changed, quantile, n_segments')

    @cached_property
    def _get_dx(self):
        range_length = self.range[1] - self.range[0]
        return range_length / self.n_segments

    #-------------------------------------------------------------------------
    # Discretization of the distribution domain
    #-------------------------------------------------------------------------
    x_array = Property(Array('float_'), depends_on=\
                        'distr_type.changed,'\
                        'quantile, n_segments')

    @cached_property
    def _get_x_array(self):
        '''Get the intrinsic discretization of the distribution
        respecting its  bounds.
        '''
        return linspace(self.range[0], self.range[1], self.n_segments + 1)

    #===========================================================================
    # Access function to the scipy distribution
    #===========================================================================
    def pdf(self, x):
        return self.distr_type.distr.pdf(x)

    def cdf(self, x):
        return self.distr_type.distr.cdf(x)

    def rvs(self, n):
        return self.distr_type.distr.rvs(n)

    def ppf(self, e):
        return self.distr_type.distr.ppf(e)

    #===========================================================================
    # PDF - permanent array
    #===========================================================================

    pdf_array = Property(Array('float_'), depends_on=\
                                    'distr_type.changed,'\
                                     'quantile, n_segments')

    @cached_property
    def _get_pdf_array(self):
        '''Get pdf values in intrinsic positions'''
        return self.distr_type.distr.pdf(self.x_array)

    def get_pdf_array(self, x_array):
        '''Get pdf values in externally specified positions'''
        return self.distr_type.distr.pdf(x_array)

    #===========================================================================
    # CDF permanent array
    #===========================================================================
    cdf_array = Property(Array('float_'), depends_on=\
                                    'distr_type.changed,'\
                                     'quantile, n_segments')

    @cached_property
    def _get_cdf_array(self):
        '''Get cdf values in intrinsic positions'''
        return self.distr_type.distr.cdf(self.x_array)

    def get_cdf_array(self, x_array):
        '''Get cdf values in externally specified positions'''
        return self.distr_type.distr.cdf(x_array)

    #-------------------------------------------------------------------------
    # Randomization
    #-------------------------------------------------------------------------
    def get_rvs_array(self, n_samples):
        return self.distr_type.distr.rvs(n_samples)

    figure = Instance(Figure)

    def _figure_default(self):
        figure = Figure(facecolor='white')
        return figure

    data_changed = Event

    def plot(self, fig):
        figure = fig
        figure.clear()
        axes = figure.gca()
        # plot PDF
        axes.plot(self.x_array, self.pdf_array, lw=1.0, color='blue', \
                  label='PDF')
        axes2 = axes.twinx()
        # plot CDF on a separate axis (tick labels left)
        axes2.plot(self.x_array, self.cdf_array, lw=2, color='red', \
                  label='CDF')
        # fill the unity area given by integrating PDF along the X-axis
        axes.fill_between(self.x_array,
                          0,
                          self.pdf_array,
                          color='lightblue',
                          alpha=0.8,
                          linewidth=2)
        # plot mean
        mean = self.distr_type.distr.stats('m')
        axes.plot([mean, mean], [0.0, self.distr_type.distr.pdf(mean)],
                  lw=1.5,
                  color='black',
                  linestyle='-')
        # plot stdev
        stdev = sqrt(self.distr_type.distr.stats('v'))
        axes.plot([mean - stdev, mean - stdev],
                  [0.0, self.distr_type.distr.pdf(mean - stdev)],
                  lw=1.5,
                  color='black',
                  linestyle='--')
        axes.plot([mean + stdev, mean + stdev],
                  [0.0, self.distr_type.distr.pdf(mean + stdev)],
                  lw=1.5,
                  color='black',
                  linestyle='--')

        axes.legend(loc='center left')
        axes2.legend(loc='center right')
        axes.ticklabel_format(scilimits=(-3., 4.))
        axes2.ticklabel_format(scilimits=(-3., 4.))

        # plot limits on X and Y axes
        axes.set_ylim(0.0, max(self.pdf_array) * 1.15)
        axes2.set_ylim(0.0, 1.15)
        range = self.range[1] - self.range[0]
        axes.set_xlim(self.x_array[0] - 0.05 * range,
                      self.x_array[-1] + 0.05 * range)
        axes2.set_xlim(self.x_array[0] - 0.05 * range,
                       self.x_array[-1] + 0.05 * range)

    def refresh(self):
        self.plot(self.figure)
        self.data_changed = True

    icon = Property(Instance(ImageResource),
                    depends_on='distr_type.changed,quantile,n_segments')

    @cached_property
    def _get_icon(self):
        fig = plt.figure(figsize=(4, 4), facecolor='white')
        self.plot(fig)
        tf_handle, tf_name = tempfile.mkstemp('.png')
        fig.savefig(tf_name, dpi=35)
        return ImageResource(name=tf_name)

    traits_view = View(HSplit(VGroup(
        Group(
            Item('distr_choice', show_label=False),
            Item('@distr_type', show_label=False),
        ),
        id='pdistrib.distr_type.pltctrls',
        label='Distribution parameters',
        scrollable=True,
    ),
                              Tabbed(
                                  Group(
                                      Item('figure',
                                           editor=MPLFigureEditor(),
                                           show_label=False,
                                           resizable=True),
                                      scrollable=True,
                                      label='Plot',
                                  ),
                                  Group(Item('quantile', label='quantile'),
                                        Item('n_segments',
                                             label='plot points'),
                                        label='Plot parameters'),
                                  label='Plot',
                                  id='pdistrib.figure.params',
                                  dock='tab',
                              ),
                              dock='tab',
                              id='pdistrib.figure.view'),
                       id='pdistrib.view',
                       dock='tab',
                       title='Statistical distribution',
                       buttons=['Ok', 'Cancel'],
                       scrollable=True,
                       resizable=True,
                       width=600,
                       height=400)
Beispiel #6
0
class ECBLMNDiagram(HasTraits):

    # calibrator supplying the effective material law
    calib = Instance(ECBLCalib)

    def _calib_default(self):
        return ECBLCalib(notify_change=self.set_modified)

    def _calib_changed(self):
        self.calib.notify_change = self.set_modified

    modified = Event

    def set_modified(self):
        print 'MN:set_modifeid'
        self.modified = True

    # cross section
    cs = DelegatesTo('calib')

    calibrated_ecb_law = Property(depends_on='modified')

    @cached_property
    def _get_calibrated_ecb_law(self):
        print 'NEW CALIBRATION'
        return self.calib.calibrated_ecb_law

    eps_cu = Property()

    def _get_eps_cu(self):
        return -self.cs.cc_law.eps_c_u

    eps_tu = Property()

    def _get_eps_tu(self):
        return self.calibrated_ecb_law.eps_tex_u

    n_eps = Int(5, auto_set=False, enter_set=True)
    eps_range = Property(depends_on='n_eps')

    @cached_property
    def _get_eps_range(self):
        eps_c_space = np.linspace(self.eps_cu, 0, self.n_eps)
        eps_t_space = np.linspace(0, self.eps_tu, self.n_eps)

        eps_ccu = 0.8 * self.eps_cu

        #eps_cc = self.eps_cu * np.ones_like(eps_c_space)
        eps_cc = np.linspace(eps_ccu, self.eps_cu, self.n_eps)
        eps_ct = self.eps_cu * np.ones_like(eps_t_space)
        eps_tc = self.eps_tu * np.ones_like(eps_c_space)
        eps_tt = self.eps_tu * np.ones_like(eps_t_space)

        eps1 = np.vstack([eps_c_space, eps_cc])
        eps2 = np.vstack([eps_t_space, eps_ct])
        eps3 = np.vstack([eps_tc, eps_c_space])
        eps4 = np.vstack([eps_tt, eps_t_space])

        return np.hstack([eps1, eps2, eps3, eps4])

    n_eps_range = Property(depends_on='n_eps')

    @cached_property
    def _get_n_eps_range(self):
        return self.eps_range.shape[1]

    #===========================================================================
    # MN Diagram
    #===========================================================================

    def _get_MN_fn(self, eps_lo, eps_up):
        self.cs.set(eps_lo=eps_lo, eps_up=eps_up)
        return (self.cs.M, self.cs.N)

    MN_vct = Property(depends_on='modified')

    def _get_MN_vct(self):
        return np.vectorize(self._get_MN_fn)

    MN_arr = Property(depends_on='modified')

    @cached_property
    def _get_MN_arr(self):
        return self.MN_vct(self.eps_range[0, :], self.eps_range[1, :])

    #===========================================================================
    # f_eps Diagram
    #===========================================================================

    current_eps_idx = Int(0)  # , auto_set = False, enter_set = True)

    def _current_eps_idx_changed(self):
        self._clear_fired()
        self._replot_fired()

    current_eps = Property(depends_on='current_eps_idx')

    @cached_property
    def _get_current_eps(self):
        return self.eps_range[(0, 1), self.current_eps_idx]

    current_MN = Property(depends_on='current_eps_idx')

    @cached_property
    def _get_current_MN(self):
        return self._get_MN_fn(*self.current_eps)

    #===========================================================================
    # Plotting
    #===========================================================================

    figure = Instance(Figure)

    def _figure_default(self):
        figure = Figure(facecolor='white')
        figure.add_axes([0.08, 0.13, 0.85, 0.74])
        return figure

    data_changed = Event

    clear = Button

    def _clear_fired(self):
        self.figure.clear()
        self.data_changed = True

    replot = Button

    def _replot_fired(self):

        ax = self.figure.add_subplot(2, 2, 1)

        ax.plot(-self.eps_range, [0, 0.06], color='black')

        ax.plot(-self.current_eps, [0, 0.06], lw=3, color='red')

        ax.spines['left'].set_position('zero')
        ax.spines['right'].set_color('none')
        ax.spines['top'].set_color('none')
        ax.spines['left'].set_smart_bounds(True)
        ax.spines['bottom'].set_smart_bounds(True)
        ax.xaxis.set_ticks_position('bottom')
        ax.yaxis.set_ticks_position('left')

        ax = self.figure.add_subplot(2, 2, 2)

        ax.plot(self.MN_arr[0], -self.MN_arr[1], lw=2, color='blue')

        ax.plot(self.current_MN[0],
                -self.current_MN[1],
                'g.',
                markersize=20.0,
                color='red')

        ax.spines['left'].set_position('zero')
        ax.spines['bottom'].set_position('zero')
        ax.spines['right'].set_color('none')
        ax.spines['top'].set_color('none')
        ax.spines['left'].set_smart_bounds(True)
        ax.spines['bottom'].set_smart_bounds(True)
        ax.xaxis.set_ticks_position('bottom')
        ax.yaxis.set_ticks_position('left')
        ax.grid(b=None, which='major')

        self.cs.set(eps_lo=self.current_eps[0], eps_up=self.current_eps[1])

        ax = self.figure.add_subplot(2, 2, 3)

        self.cs.plot_eps(ax)

        ax = self.figure.add_subplot(2, 2, 4)

        self.cs.plot_sig(ax)

        self.data_changed = True

    view = View(HSplit(
        Group(
            HGroup(
                Group(Item('n_eps', springy=True),
                      label='Discretization',
                      springy=True),
                springy=True,
            ),
            HGroup(
                Group(VGroup(
                    Item(
                        'cs',
                        label='Cross section',
                        show_label=False,
                        springy=True,
                        editor=InstanceEditor(kind='live'),
                    ),
                    Item(
                        'calib',
                        label='Calibration',
                        show_label=False,
                        springy=True,
                        editor=InstanceEditor(kind='live'),
                    ),
                    springy=True,
                ),
                      label='Cross sectoin',
                      springy=True),
                springy=True,
            ),
            scrollable=True,
        ),
        Group(
            HGroup(
                Item('replot', show_label=False),
                Item('clear', show_label=False),
            ),
            Item(
                'current_eps_idx',
                editor=RangeEditor(
                    low=0,
                    high_name='n_eps_range',
                    format='(%s)',
                    mode='slider',
                    auto_set=False,
                    enter_set=False,
                ),
                show_label=False,
            ),
            Item('figure',
                 editor=MPLFigureEditor(),
                 resizable=True,
                 show_label=False),
            id='simexdb.plot_sheet',
            label='plot sheet',
            dock='tab',
        ),
    ),
                width=1.0,
                height=0.8,
                resizable=True,
                buttons=['OK', 'Cancel'])
Beispiel #7
0
class YMBView2D(HasTraits):

    data = Instance(YMBData)

    zero = Constant(0)
    slider_max = Property()

    def _get_slider_max(self):
        return self.data.n_cuts - 1

    var_enum = Trait('radius', var_dict, modified=True)

    cut_slider = Range('zero',
                       'slider_max',
                       mode='slider',
                       auto_set=False,
                       enter_set=True,
                       modified=True)

    circle_diameter = Float(20, enter_set=True, auto_set=False, modified=True)

    underlay = Bool(False, modified=True)

    variable = Property(Array, depends_on='var_enum')

    @cached_property
    def _get_variable(self):
        return getattr(self.data, self.var_enum_)

    figure = Instance(Figure)

    def _figure_default(self):
        figure = Figure()
        figure.add_axes([0.1, 0.1, 0.8, 0.8])
        return figure

    data_changed = Event(True)

    @on_trait_change('+modified, data.input_changed')
    def _redraw(self):
        # TODO: set correct ranges, fix axis range (axes.xlim)
        self.figure.clear()
        self.figure.add_axes([0.1, 0.1, 0.8, 0.8])
        figure = self.figure
        axes = figure.axes[0]
        axes.clear()
        y_arr, z_arr = self.data.cut_data[1:3]
        y_raw_arr, z_raw_arr = self.data.cut_raw_data[0:2]
        offset = hstack([0, self.data.cut_raw_data[5]])
        scalar_arr = self.variable
        mask = y_arr[:, self.cut_slider] > -1

        axes.scatter(
            y_raw_arr[offset[self.cut_slider]:offset[self.cut_slider + 1]],
            z_raw_arr[offset[self.cut_slider]:offset[self.cut_slider + 1]],
            s=self.circle_diameter,
            color='k',
            marker='x',
            label='identified filament in cut')
        scat = axes.scatter(y_arr[:, self.cut_slider][mask],
                            z_arr[:, self.cut_slider][mask],
                            s=self.circle_diameter,
                            c=scalar_arr[:, self.cut_slider][mask],
                            cmap=my_cmap_lin,
                            label='connected filaments')
        axes.set_xlabel('$y\, [\mathrm{mm}]$', fontsize=16)
        axes.set_ylabel('$z\, [\mathrm{mm}]$', fontsize=16)

        axes.set_xlim([0, ceil(max(y_arr))])
        axes.set_ylim([0, ceil(max(z_arr))])
        axes.legend()
        figure.colorbar(scat)

        if self.underlay == True:
            axes.text(axes.get_xlim()[0],
                      axes.get_ylim()[0],
                      'That\'s all at this moment :-)',
                      color='red',
                      fontsize=20)
        self.data_changed = True

    traits_view = View(
        Group(
            Item('var_enum'),
            Item('cut_slider', springy=True),
            Item('circle_diameter', springy=True),
            Item('underlay', springy=True),
        ),
        Item('figure',
             style='custom',
             editor=MPLFigureEditor(),
             show_label=False),
        resizable=True,
    )
Beispiel #8
0
class YMBAutoCorrelView(HasTraits):

    correl_data = Instance(YMBAutoCorrel)

    axes_adjust = List([0.1, 0.1, 0.8, 0.8])

    data = Property
    def _get_data(self):
        return self.correl_data.data

    zero = Constant(0)
    slider_max = Property()
    def _get_slider_max(self):
        return self.data.n_cuts - 1

    cut_slider = Range('zero', 'slider_max', mode='slider', auto_set=False, enter_set=True, modified=True)
    vcut_slider = Range('zero', 'slider_max', mode='slider', auto_set=False, enter_set=True, modified=True)

    cut_slider_on = Bool(False, modified=True)

    color = Str('blue')

    figure = Instance(Figure)

    def _figure_default(self):
        figure = Figure()
        figure.add_axes(self.axes_adjust)
        return figure

    data_changed = Event(True)
    @on_trait_change('correl_data.input_change, +modified')
    def _redraw(self):
        # TODO: set correct ranges, fix axis range (axes.xlim)
        print 'redrawing xxxx'
        figure = self.figure
        figure.clear()
        var_data = self.correl_data.corr_arr
        id = self.cut_slider
        if self.cut_slider_on == True:
            i = self.cut_slider
            j = self.vcut_slider
            plot_data = getattr(self.data, self.correl_data.var_enum_)
            # plot_data = vstack( [plot_data[:, i], plot_data[:, j]] ).T
            # plot only values > -1
            # plot_data = plot_data[prod( plot_data >= 0, axis = 1, dtype = bool )]
            plot_data_x = plot_data[:, i]
            plot_data_y = plot_data[:, j]
            plot_data_corr = min(corrcoef(plot_data_x, plot_data_y))
            plot_data_corr_spear = spearmanr(plot_data_x, plot_data_y)[0]

            left, width = 0.1, 0.65
            bottom, height = 0.1, 0.65
            bottom_h = left_h = left + width + 0.02

            rect_scatter = [left, bottom, width, height]
            rect_histx = [left, bottom_h, width, 0.2]
            rect_histy = [left_h, bottom, 0.2, height]

            axScatter = figure.add_axes(rect_scatter)
            axHistx = figure.add_axes(rect_histx)
            axHisty = figure.add_axes(rect_histy)
            axScatter.clear()
            axHistx.clear()
            axHisty.clear()

            from matplotlib.ticker import NullFormatter
            axHistx.xaxis.set_major_formatter(NullFormatter())
            axHisty.yaxis.set_major_formatter(NullFormatter())

            axScatter.scatter(plot_data_x,
                               plot_data_y)

            # binwidth = 0.25
            # xymax = max( [max( abs( self.data.cf[:, j] ) ), max( abs( self.data.cf[:, i] ) )] )
            # lim = ( int( xymax / binwidth ) + 1 ) * binwidth

            # axScatter.set_xlim( ( -lim, lim ) )
            # axScatter.set_ylim( ( -lim, lim ) )

            # bins = arange( -lim, lim + binwidth, binwidth )
            axHistx.hist(plot_data_x.compressed(), bins=40)
            axHisty.hist(plot_data_y.compressed(), bins=40, orientation='horizontal')
            axHistx.set_xlim(axScatter.get_xlim())
            axHisty.set_ylim(axScatter.get_ylim())

            axScatter.set_xlabel('$\mathrm{cut\, %i}$' % self.cut_slider, fontsize=16)
            axScatter.set_ylabel('$\mathrm{cut\, %i}$' % self.vcut_slider, fontsize=16)
            axScatter.text(axScatter.get_xlim()[0], axScatter.get_ylim()[0],
                             'actual set correlation %.3f (Pearson), %.3f (Spearman)' % (plot_data_corr, plot_data_corr_spear), color='r')

        if self.cut_slider_on == False:
            figure.add_axes(self.axes_adjust)
            axes = figure.axes[0]
            axes.clear()
            x_coor = self.data.x_coord
            axes.grid()
            for i in range(0, var_data.shape[1]):
                axes.plot(x_coor[i:] - x_coor[i],
                           var_data[i, (i):], '-x', color=self.color)
            # approximate by the polynomial (of the i-th order)
            # axes.plot( x_coor, self.correl_data.peval( x_coor, self.correl_data.fit_correl ), 'b', linewidth = 3 )
            setp(axes.get_xticklabels(), position=(0, -.025))
            axes.set_xlabel('$x \, [\mathrm{mm}]$', fontsize=15)
            axes.set_ylabel('$\mathrm{correlation}$', fontsize=15)
            axes.set_ylim(-1, 1)

        self.data_changed = True


    traits_view = View(Group(Item('correl_data', show_label=False, style='custom'),
                              HGroup(
                       Item('cut_slider_on', label='Scatter'),
                       Item('cut_slider', show_label=False, springy=True, enabled_when='cut_slider_on == True'),
                       Item('vcut_slider', show_label=False, springy=True, enabled_when='cut_slider_on == True'),
                       ),
                       Group(Item('figure', style='custom',
                              editor=MPLFigureEditor(),
                              show_label=False)
                              , id='figure.view'),
                       ),
                       resizable=True,
                        )
Beispiel #9
0
class SPIRRIDModelView(ModelView):
    '''
    Size effect depending on the yarn length
    '''
    model = Instance(SPIRRID)
    def _model_changed(self):
        self.model.rf = self.rf

    rf_values = List(IRF)
    def _rf_values_default(self):
        return [ Filament() ]

    rf = Enum(values = 'rf_values')
    def _rf_default(self):
        return self.rf_values[0]
    def _rf_changed(self):
        # reset the rf in the spirrid model and in the rf_modelview
        self.model.rf = self.rf
        self.rf_model_view = RFModelView(model = self.rf)
        # actually, the view should be reusable but the model switch
        # did not work for whatever reason
        # the binding of the view generated by edit_traits does not 
        # react to the change in the 'model' attribute.
        #
        # Remember - we are implementing a handler here
        # that has an associated view.
        #
        # self.rf.model_view.model = self.rf

    rf_model_view = Instance(RFModelView)
    def _rf_model_view_default(self):
        return RFModelView(model = self.rf)


    rv_list = Property(List(RIDVariable), depends_on = 'rf')
    @cached_property
    def _get_rv_list(self):
        return [ RIDVariable(spirrid = self.model, rf = self.rf,
                              varname = nm, trait_value = st)
                 for nm, st in zip(self.rf.param_keys, self.rf.param_values) ]

    selected_var = Instance(RIDVariable)
    def _selected_var_default(self):
        return self.rv_list[0]

    run = Button(desc = 'Run the computation')
    def _run_fired(self):
        self._redraw()

    sample = Button(desc = 'Show samples')
    def _sample_fired(self):
        n_samples = 50

        self.model.set(
                    min_eps = 0.00, max_eps = self.max_eps, n_eps = self.n_eps,
                    )

        # get the parameter combinations for plotting
        rvs_theta_arr = self.model.get_rvs_theta_arr(n_samples)

        eps_arr = self.model.eps_arr

        figure = self.figure
        axes = figure.gca()

        for theta_arr in rvs_theta_arr.T:
            q_arr = self.rf(eps_arr, *theta_arr)
            axes.plot(eps_arr, q_arr, color = 'grey')

        self.data_changed = True

    run_legend = Str('',
                     desc = 'Legend to be added to the plot of the results')

    clear = Button
    def _clear_fired(self):
        axes = self.figure.axes[0]
        axes.clear()
        self.data_changed = True

    min_eps = Float(0.0,
                     desc = 'minimum value of the control variable')

    max_eps = Float(1.0,
                     desc = 'maximum value of the control variable')

    n_eps = Int(100,
                 desc = 'resolution of the control variable')

    label_eps = Str('epsilon',
                    desc = 'label of the horizontal axis')

    label_sig = Str('sigma',
                    desc = 'label of the vertical axis')

    figure = Instance(Figure)
    def _figure_default(self):
        figure = Figure(facecolor = 'white')
        #figure.add_axes( [0.08, 0.13, 0.85, 0.74] )
        return figure

    data_changed = Event(True)

    def _redraw(self):

        figure = self.figure
        axes = figure.gca()

        self.model.set(
                    min_eps = 0.00, max_eps = self.max_eps, n_eps = self.n_eps,
                )

        mc = self.model.mean_curve

        axes.plot(mc.xdata, mc.ydata,
                   linewidth = 2, label = self.run_legend)

        axes.set_xlabel(self.label_eps)
        axes.set_ylabel(self.label_sig)
        axes.legend(loc = 'best')

        self.data_changed = True

    traits_view_tabbed = View(
                              VGroup(
                              HGroup(
                                    Item('run_legend', resizable = False, label = 'Run label',
                                          width = 80, springy = False),
                                    Item('run', show_label = False, resizable = False),
                                    Item('sample', show_label = False, resizable = False),
                                    Item('clear', show_label = False,
                                      resizable = False, springy = False)
                                ),
                               Tabbed(
                               VGroup(
                                     Item('rf', show_label = False),
                                     Item('rf_model_view@', show_label = False, resizable = True),
                                     label = 'Deterministic model',
                                     id = 'spirrid.tview.model',
                                     ),
                                Group(
                                    Item('rv_list', editor = rv_list_editor, show_label = False),
                                    id = 'spirrid.tview.randomization.rv',
                                    label = 'Model variables',
                                ),
                                Group(
                                    Item('selected_var@', show_label = False, resizable = True),
                                    id = 'spirrid.tview.randomization.distr',
                                    label = 'Distribution',
                                ),
                                VGroup(
                                       Item('model.cached_dG' , label = 'Cached weight factors',
                                             resizable = False,
                                             springy = False),
                                       Item('model.compiled_QdG_loop' , label = 'Compiled loop over the integration product',
                                             springy = False),
                                       Item('model.compiled_eps_loop' ,
                                             enabled_when = 'model.compiled_QdG_loop',
                                             label = 'Compiled loop over the control variable',
                                             springy = False),
                                        scrollable = True,
                                       label = 'Execution configuration',
                                       id = 'spirrid.tview.exec_params',
                                       dock = 'tab',
                                     ),
                                VGroup(
                                          HGroup(
                                                 Item('min_eps' , label = 'Min',
                                                       springy = False, resizable = False),
                                                 Item('max_eps' , label = 'Max',
                                                       springy = False, resizable = False),
                                                 Item('n_eps' , label = 'N',
                                                       springy = False, resizable = False),
                                                 label = 'Simulation range',
                                                 show_border = True
                                                 ),
                                          VGroup(
                                                 Item('label_eps' , label = 'x', resizable = False,
                                                 springy = False),
                                                 Item('label_sig' , label = 'y', resizable = False,
                                                 springy = False),
                                                 label = 'Axes labels',
                                                 show_border = True,
                                                 scrollable = True,
                                                 ),
                                           label = 'Execution control',
                                           id = 'spirrid.tview.view_params',
                                           dock = 'tab',
                                 ),
                                VGroup(
                                        Item('figure', editor = MPLFigureEditor(),
                                             resizable = True, show_label = False),
                                        label = 'Plot sheet',
                                        id = 'spirrid.tview.figure_window',
                                        dock = 'tab',
                                        scrollable = True,
                                ),
                                scrollable = True,
                                id = 'spirrid.tview.tabs',
                                dock = 'tab',
                        ),
                        ),
                        title = 'SPIRRID',
                        id = 'spirrid.viewmodel',
                        dock = 'tab',
                        resizable = True,
                        height = 1.0, width = 1.0
                        )
Beispiel #10
0
class ImageProcessing(HasTraits):
    def __init__(self, **kw):
        super(ImageProcessing, self).__init__(**kw)
        self.on_trait_change(self.refresh, '+params')
        self.refresh()

    image_path = Str

    def rgb2gray(self, rgb):
        return np.dot(rgb[..., :3], [0.299, 0.587, 0.144])

    filter = Bool(False, params=True)
    block_size = Range(1, 100, params=True)
    offset = Range(1, 20, params=True)
    denoise = Bool(False, params=True)
    denoise_spatial = Range(1, 100, params=True)

    processed_image = Property

    def _get_processed_image(self):
        # read image
        image = mpimg.imread(self.image_path)
        mask = image[:, :, 1] > 150.
        image[mask] = 255.
        #plt.imshow(image)
        #plt.show()
        # convert to grayscale
        image = self.rgb2gray(image)
        # crop image
        image = image[100:1000, 200:1100]
        mask = mask[100:1000, 200:1100]
        image = image - np.min(image)
        image[mask] *= 255. / np.max(image[mask])
        if self.filter == True:
            image = denoise_bilateral(image,
                                      sigma_spatial=self.denoise_spatial)
        if self.denoise == True:
            image = threshold_adaptive(image,
                                       self.block_size,
                                       offset=self.offset)
        return image, mask

    edge_detection_method = Enum('canny', 'sobel', 'roberts', params=True)
    canny_sigma = Range(2.832, 5, params=True)
    canny_low = Range(5.92, 100, params=True)
    canny_high = Range(0.1, 100, params=True)

    edges = Property

    def _get_edges(self):
        img_edg, mask = self.processed_image
        if self.edge_detection_method == 'canny':
            img_edg = canny(img_edg,
                            sigma=self.canny_sigma,
                            low_threshold=self.canny_low,
                            high_threshold=self.canny_high)
        elif self.edge_detection_method == 'roberts':
            img_edg = roberts(img_edg)
        elif self.edge_detection_method == 'sobel':
            img_edg = sobel(img_edg)
        img_edg = img_edg > 0.0
        return img_edg

    radii = Int(80, params=True)
    radius_low = Int(40, params=True)
    radius_high = Int(120, params=True)
    step = Int(2, params=True)

    hough_circles = Property

    def _get_hough_circles(self):
        hough_radii = np.arange(self.radius_low, self.radius_high,
                                self.step)[::-1]
        hough_res = hough_circle(self.edges, hough_radii)
        centers = []
        accums = []
        radii = []  # For each radius, extract num_peaks circles
        num_peaks = 3
        for radius, h in zip(hough_radii, hough_res):
            peaks = peak_local_max(h, num_peaks=num_peaks)
            centers.extend(peaks)
            print 'circle centers = ', peaks
            accums.extend(h[peaks[:, 0], peaks[:, 1]])
            radii.extend([radius] * num_peaks)

        im = mpimg.imread(self.image_path)
        # crop image
        im = im[100:1000, 200:1100]
        for idx in np.arange(len(centers)):
            center_x, center_y = centers[idx]
            radius = radii[idx]
            cx, cy = circle_perimeter(center_y, center_x, radius)
            mask = (cx < im.shape[0]) * (cy < im.shape[1])
            im[cy[mask], cx[mask]] = (220., 20., 20.)
        return im

    eval_edges = Button

    def _eval_edges_fired(self):
        edges = self.figure_edges
        edges.clear()
        axes_edges = edges.gca()
        axes_edges.imshow(self.edges, plt.gray())
        self.data_changed = True

    eval_circles = Button

    def _eval_circles_fired(self):
        circles = self.figure_circles
        circles.clear()
        axes_circles = circles.gca()
        axes_circles.imshow(self.hough_circles, plt.gray())
        self.data_changed = True

    figure = Instance(Figure)

    def _figure_default(self):
        figure = Figure(facecolor='white')
        return figure

    figure_edges = Instance(Figure)

    def _figure_edges_default(self):
        figure = Figure(facecolor='white')
        return figure

    figure_circles = Instance(Figure)

    def _figure_circles_default(self):
        figure = Figure(facecolor='white')
        return figure

    data_changed = Event

    def plot(self, fig, fig2):
        figure = fig
        figure.clear()
        axes = figure.gca()
        img, mask = self.processed_image
        axes.imshow(img, plt.gray())

    def refresh(self):
        self.plot(self.figure, self.figure_edges)
        self.data_changed = True

    traits_view = View(HGroup(
        Group(Item('filter', label='filter'),
              Item('block_size'),
              Item('offset'),
              Item('denoise', label='denoise'),
              Item('denoise_spatial'),
              label='Filters'),
        Group(
            Item('figure',
                 editor=MPLFigureEditor(),
                 show_label=False,
                 resizable=True),
            scrollable=True,
            label='Plot',
        ),
    ),
                       Tabbed(
                           VGroup(Item('edge_detection_method'),
                                  Item('canny_sigma'),
                                  Item('canny_low'),
                                  Item('canny_high'),
                                  Item('eval_edges', label='Evaluate'),
                                  Item('figure_edges',
                                       editor=MPLFigureEditor(),
                                       show_label=False,
                                       resizable=True),
                                  scrollable=True,
                                  label='Plot_edges'), ),
                       Tabbed(
                           VGroup(Item('radii'),
                                  Item('radius_low'),
                                  Item('radius_high'),
                                  Item('step'),
                                  Item('eval_circles'),
                                  Item('figure_circles',
                                       editor=MPLFigureEditor(),
                                       show_label=False,
                                       resizable=True),
                                  scrollable=True,
                                  label='Plot_circles'), ),
                       id='imview',
                       dock='tab',
                       title='Image processing',
                       scrollable=True,
                       resizable=True,
                       width=600,
                       height=400)
Beispiel #11
0
class ECBLCalibModelView(ModelView):
    '''Model in a viewable window.
    '''
    model = Instance(ECBLCalib)

    def _model_default(self):
        return ECBLCalib()

    cs_state = Property(Instance(ECBCrossSection), depends_on='model')

    @cached_property
    def _get_cs_state(self):
        return self.model.cs

    data_changed = Event

    figure = Instance(Figure)

    def _figure_default(self):
        figure = Figure(facecolor='white')
        return figure

    replot = Button()

    def _replot_fired(self):
        ax = self.figure.add_subplot(1, 1, 1)
        self.model.calibrated_ecb_law.plot(ax)
        self.data_changed = True

    clear = Button()

    def _clear_fired(self):
        self.figure.clear()
        self.data_changed = True

    calibrated_ecb_law = Property(Instance(ECBLBase), depends_on='model')

    @cached_property
    def _get_calibrated_ecb_law(self):
        return self.model.calibrated_ecb_law

    view = View(HSplit(
        VGroup(
            Item('cs_state', label='Cross section', show_label=False),
            Item('model@', show_label=False),
            Item('calibrated_ecb_law@', show_label=False, resizable=True),
        ),
        Group(
            HGroup(
                Item('replot', show_label=False),
                Item('clear', show_label=False),
            ),
            Item('figure',
                 editor=MPLFigureEditor(),
                 resizable=True,
                 show_label=False),
            id='simexdb.plot_sheet',
            label='plot sheet',
            dock='tab',
        ),
    ),
                width=0.5,
                height=0.4,
                buttons=['OK', 'Cancel'],
                resizable=True)
Beispiel #12
0
class YMBHist(HasTraits):

    slider = Instance(YMBSlider)

    figure = Instance(Figure)

    bins = Int(20, auto_set=False, enter_set=True, modified=True)
    xlimit_on = Bool(False, modified=True)
    ylimit_on = Bool(False, modified=True)
    xlimit = Float(100, auto_set=False, enter_set=True, modified=True)
    ylimit = Float(100, auto_set=False, enter_set=True, modified=True)
    multi_hist_on = Bool(False, modified=True)
    stats_on = Bool(False, modified=True)
    normed_on = Bool(False, modified=True)

    normed_hist = Property(depends_on='+modified, slider.input_change')

    @cached_property
    def _get_normed_hist(self):
        data = self.slider.stat_data
        h, b = histogram(data, bins=self.bins, normed=True)
        return h, b

    range = Property

    def _get_range(self):
        h, b = self.normed_hist
        return (min(b), max(b))

    bin_width = Property

    def _get_bin_width(self):
        return (self.range[1] - self.range[0]) / self.bins

    def _figure_default(self):
        figure = Figure()
        figure.add_axes(self.axes_adjust)
        return figure

    edge_color = Str(None)
    face_color = Str(None)
    axes_adjust = List([0.1, 0.1, 0.8, 0.8])

    data_changed = Event(True)

    @on_trait_change('+modified, slider.input_change')
    def _redraw(self):
        figure = self.figure
        axes = figure.axes[0]
        axes.clear()
        if self.multi_hist_on == True:
            histtype = 'step'
            lw = 3
            plot_data = getattr(self.slider.data, self.slider.var_enum_)
            for i in range(0, plot_data.shape[1]):
                axes.hist(plot_data[:, i].compressed(),
                          bins=self.bins,
                          histtype=histtype,
                          color='gray')
        if self.multi_hist_on == False:
            histtype = 'bar'
            lw = 1
        var_data = self.slider.stat_data

        axes.hist(var_data, bins=self.bins, histtype=histtype, linewidth=lw, \
                   normed=self.normed_on, edgecolor=self.edge_color, facecolor=self.face_color)
        if self.stats_on == True:
            xint = axes.xaxis.get_view_interval()
            yint = axes.yaxis.get_view_interval()
            axes.text(
                xint[0], yint[0],
                'mean = %e, std = %e' % (mean(var_data), sqrt(var(var_data))))

        # redefine xticks labels
        # inter = axes.xaxis.get_view_interval()
        # axes.set_xticks( linspace( inter[0], inter[1], 5 ) )
        axes.set_xlabel(self.slider.var_enum)
        axes.set_ylabel('frequency')  # , fontsize = 16
        setp(axes.get_xticklabels(), position=(0, -.025))
        if self.xlimit_on == True:
            axes.set_xlim(0, self.xlimit)
        if self.ylimit_on == True:
            axes.set_ylim(0, self.ylimit)
        self.data_changed = True

    view = View(
        Group(
            Item('figure',
                 style='custom',
                 editor=MPLFigureEditor(),
                 show_label=False,
                 id='figure.view'),
            HGroup(
                Item('bins'), Item('ylimit_on', label='Y limit'),
                Item('ylimit',
                     enabled_when='ylimit_on == True',
                     show_label=False), Item('stats_on', label='stats'),
                Item('normed_on', label='norm'),
                Item('multi_hist_on', label='multi')),
            label='histogram',
            dock='horizontal',
            id='yarn_hist.figure',
        ),
        Group(
            Item('slider', style='custom', show_label=False),
            label='yarn data',
            dock='horizontal',
            id='yarn_hist.config',
        ),
        id='yarn_structure_view',
        resizable=True,
        scrollable=True,
        # width = 0.8,
        # height = 0.4
    )
class ECBLCalibHistModelView(ModelView):
    '''Model in a viewable window.
    '''
    model = Instance(ECBLCalibHist)

    def _model_default(self):
        return ECBLCalibHist()

    cs_states = Property(List(Instance(ECBCrossSectionState)),
                         depends_on='model')

    @cached_property
    def _get_cs_states(self):
        return self.model.cs_states

    current_cs_state = Instance(ECBCrossSectionState)

    def _current_cs_default(self):
        self.model.cs_states[0]

    def _current_cs_state_changed(self):
        self._replot_fired()

    eps_range = Property

    def _get_eps_range(self):
        eps_arr = [[cs_state.eps_up, cs_state.eps_lo]
                   for cs_state in self.cs_states]
        eps_range = np.asarray(eps_arr)
        print 'eps_range', eps_range
        return (-np.max(eps_range[:, 1]), -np.min(eps_range[:, 0]))

    f_range = Property

    def _get_f_range(self):
        f_arr = [[np.max(cs_state.f_ti_arr),
                  np.min(cs_state.f_cj_arr)] for cs_state in self.cs_states]
        f_range = np.asarray(f_arr)
        print 'eps_range', f_range
        return (-np.max(f_range[:, 0]), -np.min(f_range[:, 1]))

    data_changed = Event

    figure = Instance(Figure)

    def _figure_default(self):
        figure = Figure(facecolor='white')
        return figure

    replot = Button()

    def _replot_fired(self):
        if self.current_cs_state:
            cs = self.current_cs_state
        else:
            cs = self.cs_states[0]
        cs.plot(self.figure, eps_range=self.eps_range, f_range=self.f_range)
        self.data_changed = True

    clear = Button()

    def _clear_fired(self):
        self.figure.clear()
        self.data_changed = True

    view = View(HSplit(
        VGroup(
            Item('cs_states',
                 editor=cs_states_editor,
                 label='Cross section',
                 show_label=False),
            Item('model@', show_label=False),
        ),
        Group(
            HGroup(
                Item('replot', show_label=False),
                Item('clear', show_label=False),
            ),
            Item('figure',
                 editor=MPLFigureEditor(),
                 resizable=True,
                 show_label=False),
            id='simexdb.plot_sheet',
            label='plot sheet',
            dock='tab',
        ),
    ),
                width=0.8,
                height=0.7,
                buttons=['OK', 'Cancel'],
                resizable=True)
Beispiel #14
0
class YMBReport(HasTraits):

    body_tex = Str()

    data = Instance(YMBData, changed=True)

    yarn = Property(Str, depends_on='+changed')

    @cached_property
    def _get_yarn(self):
        return self.data.source.yarn_type

    data_dir = Property(Str, depends_on='+changed')

    def _get_data_dir(self):
        return join(simdb.exdata_dir, 'trc', 'yarn_structure', self.yarn,
                    'raw_data')

    tex_dir = Property(Str, depends_on='+changed')

    def _get_tex_dir(self):
        return join(simdb.exdata_dir, 'trc', 'yarn_structure', self.yarn,
                    'report')

    fig_dir = Property(Str, depends_on='+changed')

    def _get_fig_dir(self):
        return join(simdb.exdata_dir, 'trc', 'yarn_structure', self.yarn,
                    'report', 'figs')

    # select data for report
    plot_3d_on = Bool(True)
    hist_rad_on = Bool(True)
    hist_cf_on = Bool(True)
    hist_bfl_on = Bool(True)
    hist_slack_on = Bool(True)
    corr_plot_rad_on = Bool(True)
    corr_plot_cf_on = Bool(True)
    corr_plot_bfl_on = Bool(True)
    corr_plot_slack_on = Bool(True)
    spirrid_on = Bool(False)

    hist_axes_adjust = List([0.12, 0.17, 0.68, 0.68])
    corr_axes_adjust = List([0.15, 0.17, 0.75, 0.68])
    n_bins = Int(40)

    #################################
    # BUILD REPORT
    #################################

    build = Button(label='build report')

    def _build_fired(self):
        self._directory_test()

        # get the yarn type
        yt = self.data.source.yarn_type

        if self.plot_3d_on == True:
            self._save_plot3d_fired()
        if self.hist_rad_on == True:
            self._save_rad_fired()
        if self.hist_cf_on == True:
            self._save_cf_fired()
        if self.hist_bfl_on == True:
            self._save_bfl_fired()
        if self.hist_slack_on == True:

            self._save_slack_fired()
        if self.corr_plot_rad_on == True:
            self._save_corr_plot_rad_fired()
        if self.corr_plot_cf_on == True:
            self._save_corr_plot_cf_fired()
        if self.corr_plot_bfl_on == True:
            self._save_corr_plot_bfl_fired()
        if self.corr_plot_slack_on == True:
            self._save_corr_plot_slack_fired()

        print '================'
        print 'Figure(s) saved'
        print '================'

        #################################
        # BUILD REPORT
        #################################

        filename = 'ymb_report_' + yt
        texfile = join(self.tex_dir, filename + '.tex')
        pdffile = join(self.tex_dir, filename + '.pdf')

        bodyfile = join(self.tex_dir, texfile)
        body_out = open(bodyfile, 'w')

        self.body_tex += 'Yarn with contact fraction limit = %s\n' % self.data.cf_limit

        if self.plot_3d_on == True:
            self.body_tex += self.plot3d_tex
        if self.hist_rad_on == True:
            self.body_tex += self.rad_tex
        if self.hist_cf_on == True:
            self.body_tex += self.cf_tex
        if self.hist_bfl_on == True:
            self.body_tex += self.bfl_tex
        if self.hist_slack_on == True:
            self.body_tex += self.slack_tex
        if self.corr_plot_rad_on == True:
            self.body_tex += self.corr_plot_rad_tex
        if self.corr_plot_cf_on == True:
            self.body_tex += self.corr_plot_cf_tex
        if self.corr_plot_bfl_on == True:
            self.body_tex += self.corr_plot_bfl_tex
        if self.corr_plot_slack_on == True:
            self.body_tex += self.corr_plot_slack_tex

        body_out.write(start_tex)
        body_out.write('\section*{ Yarn %s }' % (self.yarn))
        body_out.write(self.body_tex)
        body_out.write(end_tex)
        body_out.close()
        os.system('cd ' + self.tex_dir + ';pdflatex -shell-escape ' + texfile)
        print '=============================='
        print 'Report written to %s', texfile
        print '=============================='
        os.system('acroread ' + pdffile + ' &')

    #################################
    # 3d PLOT
    #################################

    plot3d = Property(Instance(YMBView3D))

    @cached_property
    def _get_plot3d(self):
        plot3d = YMBView3D(data=self.data, color_map='binary')  # black-white
        return plot3d

    save_plot3d = Button(label='save plot3d figure')

    def _save_plot3d_fired(self):
        self._directory_test()
        filename = join(self.fig_dir, 'plot3d.png')
        self.plot3d.scene.save(filename, (1000, 800))

    plot3d_tex = Property(Str)

    @cached_property
    def _get_plot3d_tex(self):
        filename = 'plot3d.png'
        if file_test(join(self.fig_dir, filename)) == True:
            return fig_tex % (filename, '3D yarn plot')
        else:
            self._save_plot3d_fired()
            return fig_tex % (filename, '3D yarn plot')

    #################################
    # HISTOGRAM PLOT AND SAVE
    #################################

    hist_rad = Property(Instance(YMBHist))  # Instance(Figure )

    @cached_property
    def _get_hist_rad(self):
        histog = YMBHist()
        histog.set(edge_color='black',
                   face_color='0.75',
                   axes_adjust=self.hist_axes_adjust)
        slider = YMBSlider(var_enum='radius', data=self.data)
        return histog.set(slider=slider, bins=self.n_bins, normed_on=True)

    save_rad = Button(label='save histogram of radius')

    def _save_rad_fired(self):
        self._directory_test()
        filename = join(self.fig_dir, 'radius.pdf')
        self.hist_rad.figure.savefig(filename, format='pdf')

    rad_tex = Property(Str)

    @cached_property
    def _get_rad_tex(self):
        filename = 'radius.pdf'
        if file_test(join(self.fig_dir, filename)) == True:
            return fig_tex % (filename, 'Histogram of filament radius')
        else:
            self._save_rad_fired()
            return fig_tex % (filename, 'Histogram of filament radius')

    hist_cf = Property(Instance(YMBHist))

    @cached_property
    def _get_hist_cf(self):
        histog = YMBHist()
        histog.set(edge_color='black',
                   face_color='0.75',
                   axes_adjust=self.hist_axes_adjust)
        slider = YMBSlider(var_enum='contact fraction', data=self.data)
        return histog.set(slider=slider, bins=self.n_bins, normed_on=True)

    save_cf = Button(label='save histogram of contact fraction')

    def _save_cf_fired(self):
        self._directory_test()
        filename = join(self.fig_dir, 'contact_fraction.pdf')
        self.hist_cf.figure.savefig(filename, format='pdf')

    cf_tex = Property(Str)

    @cached_property
    def _get_cf_tex(self):
        filename = 'contact_fraction.pdf'
        if file_test(join(self.fig_dir, filename)) == True:
            return fig_tex % (filename, 'Histogram of contact fraction')
        else:
            self._save_cf_fired()
            return fig_tex % (filename, 'Histogram of contact fraction')

    hist_bfl = Property(Instance(YMBHist))

    @cached_property
    def _get_hist_bfl(self):
        histog = YMBHist()
        histog.set(edge_color='black',
                   face_color='0.75',
                   axes_adjust=self.hist_axes_adjust)
        slider = YMBSlider(var_enum='bond free length', data=self.data)
        return histog.set(slider=slider, bins=self.n_bins, normed_on=True)

    save_bfl = Button(label='save histogram of bond free length')

    def _save_bfl_fired(self):
        self._directory_test()
        filename = 'bond_free_length.pdf'
        self.hist_bfl.figure.savefig(join(self.fig_dir, filename),
                                     format='pdf')

    bfl_tex = Property(Str)

    @cached_property
    def _get_bfl_tex(self):
        filename = 'bond_free_length.pdf'
        if file_test(join(self.fig_dir, filename)) == True:
            return fig_tex % (filename, 'Histogram of bond free length')
        else:
            self._save_bfl_fired()
            return fig_tex % (filename, 'Histogram of bond free length')

    hist_slack = Property(Instance(YMBHist))

    @cached_property
    def _get_hist_slack(self):
        histog = YMBHist()
        histog.set(edge_color='black',
                   face_color='0.75',
                   axes_adjust=self.hist_axes_adjust)
        slider = YMBSlider(var_enum='slack', data=self.data)
        return histog.set(slider=slider,
                          bins=self.n_bins,
                          normed_on=True,
                          xlimit_on=True,
                          xlimit=0.03)

    save_slack = Button(label='save histogram of slack')

    def _save_slack_fired(self):
        self._directory_test()
        filename = join(self.fig_dir, 'slack.pdf')
        self.hist_slack.figure.savefig(filename, format='pdf')

    slack_tex = Property(Str)

    @cached_property
    def _get_slack_tex(self):
        filename = 'slack.pdf'
        if file_test(join(self.fig_dir, filename)) == True:
            return fig_tex % (filename, 'Histogram of slack')
        else:
            self._save_slack_fired()
            return fig_tex % (filename, 'Histogram of slack')

    corr_plot_rad = Property(Instance(YMBAutoCorrel))

    @cached_property
    def _get_corr_plot_rad(self):
        plot = YMBAutoCorrelView()
        plot.set(color='black', axes_adjust=self.corr_axes_adjust)
        return plot.set(
            correl_data=YMBAutoCorrel(data=data, var_enum='radius'))

    save_corr_plot_rad = Button(label='save correlation plot of radius')

    def _save_corr_plot_rad_fired(self):
        self._directory_test()
        filename = join(self.fig_dir, 'corr_plot_rad.pdf')
        self.corr_plot_rad.figure.savefig(filename, format='pdf')

    corr_plot_rad_tex = Property(Str)

    @cached_property
    def _get_corr_plot_rad_tex(self):
        filename = 'corr_plot_rad.pdf'
        if file_test(join(self.fig_dir, filename)) == True:
            return fig_tex % (filename, 'Autocorrelation of radius')
        else:
            self._save_corr_plot_rad_fired()
            return fig_tex % (filename, 'Autocorrelation of radius')

    corr_plot_cf = Property(Instance(YMBAutoCorrel))

    @cached_property
    def _get_corr_plot_cf(self):
        plot = YMBAutoCorrelView()
        plot.set(color='black', axes_adjust=self.corr_axes_adjust)
        return plot.set(
            correl_data=YMBAutoCorrel(data=data, var_enum='contact fraction'))

    save_corr_plot_cf = Button(
        label='save correlation plot of contact fraction')

    def _save_corr_plot_cf_fired(self):
        self._directory_test()
        filename = join(self.fig_dir, 'corr_plot_cf.pdf')
        self.corr_plot_cf.figure.savefig(filename, format='pdf')

    corr_plot_cf_tex = Property(Str)

    @cached_property
    def _get_corr_plot_cf_tex(self):
        filename = 'corr_plot_cf.pdf'
        if file_test(join(self.fig_dir, filename)) == True:
            return fig_tex % (filename, 'Autocorrelation of contact fraction')
        else:
            self._save_corr_plot_cf_fired()
            return fig_tex % (filename, 'Autocorrelation of contact fraction')

    corr_plot_bfl = Property(Instance(YMBAutoCorrel))

    @cached_property
    def _get_corr_plot_bfl(self):
        plot = YMBAutoCorrelView()
        plot.set(color='black', axes_adjust=self.corr_axes_adjust)
        return plot.set(
            correl_data=YMBAutoCorrel(data=data, var_enum='bond free length'))

    save_corr_plot_bfl = Button(label='save corr plot of bond free length')

    def _save_corr_plot_bfl_fired(self):
        self._directory_test()
        filename = join(self.fig_dir, 'corr_plot_bfl.pdf')
        self.corr_plot_bfl.figure.savefig(filename, format='pdf')

    corr_plot_bfl_tex = Property(Str)

    @cached_property
    def _get_corr_plot_bfl_tex(self):
        filename = 'corr_plot_bfl.pdf'
        if file_test(join(self.fig_dir, filename)) == True:
            return fig_tex % (filename, 'Autocorrelation of bond free length')
        else:
            self._save_corr_plot_bfl_fired()
            return fig_tex % (filename, 'Autocorrelation of bond free length')

    corr_plot_slack = Property(Instance(YMBAutoCorrel))

    @cached_property
    def _get_corr_plot_slack(self):
        plot = YMBAutoCorrelView()
        plot.set(color='black', axes_adjust=self.corr_axes_adjust)
        return plot.set(correl_data=YMBAutoCorrel(data=data, var_enum='slack'))

    save_corr_plot_slack = Button(label='save corr plot of slack')

    def _save_corr_plot_slack_fired(self):
        self._directory_test()
        filename = join(self.fig_dir, 'corr_plot_slack.pdf')
        self.corr_plot_slack.figure.savefig(filename, format='pdf')

    corr_plot_slack_tex = Property(Str)

    @cached_property
    def _get_corr_plot_slack_tex(self):
        filename = 'corr_plot_slack.pdf'
        if file_test(join(self.fig_dir, filename)) == True:
            return fig_tex % (filename, 'Autocorrelation of slack')
        else:
            self._save_corr_plot_slack_fired()
            return fig_tex % (filename, 'Autocorrelation of slack')

    #################################
    # CORRELATION PLOT AND TABLE
    #################################

    def corr_plot(self):
        return 0

    #################################
    # SPIRRID PLOT
    #################################

    spirrid_plot = Property(Instance(YMBPullOut))

    @cached_property
    def _get_spirrid_plot(self):
        return YMBPullOut(data=self.data)

    pdf_theta = Property(Instance(IPDistrib))

    def _get_pdf_theta(self):
        theta = self.spirrid_plot.pdf_theta
        # theta.set( face_color = '0.75', edge_color = 'black', axes_adjust = [0.13, 0.18, 0.8, 0.7] )
        return theta

    pdf_l = Property(Instance(IPDistrib))

    def _get_pdf_l(self):
        return self.spirrid_plot.pdf_l

    pdf_phi = Property(Instance(IPDistrib))

    def _get_pdf_phi(self):
        return self.spirrid_plot.pdf_phi

    pdf_xi = Property(Instance(IPDistrib))

    def _get_pdf_xi(self):
        return self.spirrid_plot.pdf_xi.figure

    def _directory_test(self):
        if os.access(self.tex_dir, os.F_OK) == False:
            os.mkdir(self.tex_dir)
        if os.access(self.fig_dir, os.F_OK) == False:
            os.mkdir(self.fig_dir)

    traits_view = View(
        HSplit(
            Group(
                Item('data@', show_label=False),
                HGroup(
                    VGrid(
                        Item(
                            'plot_3d_on',
                            label='plot3d',
                        ),
                        Item('save_plot3d',
                             show_label=False,
                             visible_when='plot_3d_on == True'),
                        Item('_'),
                        Item('hist_rad_on', label='radius_hist'),
                        Item('save_rad',
                             show_label=False,
                             visible_when='hist_rad_on == True'),
                        Item('hist_cf_on', label='cf_hist'),
                        Item('save_cf',
                             show_label=False,
                             visible_when='hist_cf_on == True'),
                        Item('hist_bfl_on', label='bfl_hist'),
                        Item('save_bfl',
                             show_label=False,
                             visible_when='hist_bfl_on == True'),
                        Item('hist_slack_on', label='slack_hist'),
                        Item('save_slack',
                             show_label=False,
                             visible_when='hist_slack_on == True'),
                        Item('_'),
                        Item('corr_plot_rad_on', label='corr_plot_rad'),
                        Item('save_corr_plot_rad',
                             show_label=False,
                             visible_when='hist_slack_on == True'),
                        Item('corr_plot_cf_on', label='corr_plot_cf'),
                        Item('save_corr_plot_cf',
                             show_label=False,
                             visible_when='hist_slack_on == True'),
                        Item('corr_plot_bfl_on', label='corr_plot_bfl'),
                        Item('save_corr_plot_bfl',
                             show_label=False,
                             visible_when='hist_slack_on == True'),
                        Item('corr_plot_slack_on', label='corr_plot_slack'),
                        Item('save_corr_plot_slack',
                             show_label=False,
                             visible_when='hist_slack_on == True'),
                    ),
                    VGrid(Item('spirrid_on'), ),
                ),
                Item('build'),
                label='report',
                id='report.bool',
            ), ),
        VGroup(
            HGroup(
                Item('hist_rad@', show_label=False),
                Item('hist_cf@', show_label=False),
            ),
            HGroup(
                Item('hist_bfl@', show_label=False),
                Item('hist_slack@', show_label=False),
            ),
            label='histograms',
            id='report.hist',
        ),
        VGroup(
            HGroup(
                Item('corr_plot_rad@', show_label=False),
                Item('corr_plot_cf@', show_label=False),
            ),
            HGroup(
                Item('corr_plot_bfl@', show_label=False),
                Item('corr_plot_slack@', show_label=False),
            ),
            label='correlation plot',
            id='report.corr_plot',
        ),

        #                HGroup(
        #                Group(
        #                Item( 'pdf_theta@', show_label = False ),
        #                Item( 'pdf_l@', show_label = False ),
        #                ),
        #                Group(
        #                Item( 'pdf_phi@', show_label = False ),
        #                Item( 'pdf_xi@', show_label = False ),
        #                ),
        #                label = 'pdf',
        #                id = 'report.pdf',
        #                #scrollable = True,
        #                ),
        Group(Item('plot3d@', show_label=False),
              label='plot3d',
              id='report.plot3d'),
        resizable=True,
        title=u"Yarn name",
        handler=TitleHandler(),
        id='report.main',
    )
Beispiel #15
0
class YarnPullOut(HasTraits):
    '''Idealization of the double sided pullout using the SPIRRID
    statistical integration tool.
    '''
    rf = Instance(DoublePulloutSym)

    def _rf_default(self):
        return DoublePulloutSym(tau_fr=2.6,
                                l=0.0,
                                d=25.5e-3,
                                E_mod=72.0e3,
                                theta=0.0,
                                xi=0.0179,
                                phi=1.,
                                L=30.0,
                                free_fiber_end=True)


#        return DoublePulloutSym( tau_fr = 2.5, l = 0.01, d = 25.5e-3, E_mod = 70.0e3,
#                                 theta = 0.01, xi = 0.0179, phi = 1., n_f = 1723 )

    figure = Instance(Figure)

    def _figure_default(self):
        figure = Figure(facecolor='white')
        figure.add_axes([0.08, 0.13, 0.85, 0.74])
        return figure

    pdf_theta_on = Bool(True)
    pdf_l_on = Bool(True)
    pdf_phi_on = Bool(True)
    pdf_xi_on = Bool(True)

    pdf_xi = Instance(IPDistrib)

    def _pdf_xi_default(self):
        pd = PDistrib(distr_choice='weibull_min', n_segments=30)
        pd.distr_type.set(shape=4.54, scale=0.017)
        return pd

    n_f = Float(1,
                auto_set=False,
                enter_set=True,
                desc='Number of filaments in the yarn')

    pdf_theta = Instance(IPDistrib)

    pdf_l = Instance(IPDistrib)

    pdf_phi = Instance(IPDistrib)

    run = Button

    def _run_fired(self):
        self._redraw()

    clear = Button

    def _clear_fired(self):
        axes = self.figure.axes[0]
        axes.clear()
        self.data_changed = True

    w_max = Float(1.0, enter_set=True, auto_set=False)

    n_w_pts = Int(100, enter_set=True, auto_set=False)

    n_G_ipts = Int(30, enter_set=True, auto_set=False)

    e_arr = Property(Array, depends_on='w_max, n_w_pts')

    def _get_e_arr(self):
        return linspace(0.00, self.w_max, self.n_w_pts)

    lab = Str(' ', enter_set=True, auto_set=False)

    data_changed = Event(True)

    def _redraw(self):

        s = SPIRRID(
            q=self.rf,
            sampling_type='LHS',
            e_arr=self.e_arr,
            n_int=self.n_G_ipts,
            theta_vars=dict(tau_fr=2.6,
                            l=0.0,
                            d=25.5e-3,
                            E_mod=72.0e3,
                            theta=0.0,
                            xi=0.0179,
                            phi=1.,
                            L=30.0),
            # codegen_type='weave'
        )
        # construct the random variables

        if self.pdf_xi_on:
            s.theta_vars['xi'] = RV(
                'weibull_min', shape=4.54, scale=0.017
            )  # RV( pd = self.pdf_xi, name = 'xi', n_int = self.n_G_ipts )

        print self.pdf_theta.interp_ppf([0.01, 0.02])
        print YMB_RV('theta', distr=self.pdf_theta,
                     n_int=self.n_G_ipts).distr.interp_ppf([0.01, 0.02])
        if self.pdf_theta_on:
            s.theta_vars['theta'] = YMB_RV('theta',
                                           distr=self.pdf_theta,
                                           n_int=self.n_G_ipts)

        if self.pdf_l_on:
            s.theta_vars['l'] = YMB_RV('l',
                                       distr=self.pdf_l,
                                       n_int=self.n_G_ipts)

        if self.pdf_phi_on:
            s.theta_vars['phi'] = YMB_RV('phi',
                                         distr=self.pdf_phi,
                                         n_int=self.n_G_ipts)

        # print 'checking unity', s.mu_q_arr()

        mu = s.mu_q_arr
        axes = self.figure.axes[0]
        # TODO:
        axes.plot(self.e_arr, mu * self.n_f, linewidth=2, label=self.lab)

        axes.set_xlabel('crack opening w[mm]')
        axes.set_ylabel('force P[N]')
        axes.legend(loc='best')

        self.data_changed = True

    view = View(HSplit(
        Group(Item('rf@', show_label=False), label='Response function'),
        Tabbed(
            Group(
                Item('pdf_theta_on', show_label=False),
                Item('pdf_theta@', show_label=False),
                label='Slack',
            ),
            Group(
                Item('pdf_l_on', show_label=False),
                Item('pdf_l@', show_label=False),
                label='Contact free length',
            ),
            Group(
                Item('pdf_phi_on', show_label=False),
                Item('pdf_phi@', show_label=False),
                label='Contact fraction',
            ),
            Group(
                Item('pdf_xi_on', show_label=False),
                Item('pdf_xi@', show_label=False),
                label='Strength',
            ),
            label='yarn data',
            scrollable=True,
            id='ymb.pullout.dist',
            dock='tab',
        ),
        Group(
            HGroup(Item('run', show_label=False, springy=True),
                   Item('clear', show_label=False, springy=True)),
            HGroup(
                Item('w_max',
                     show_label=True,
                     springy=True,
                     tooltip='maximum crack-opening displacement'),
                Item('n_w_pts',
                     show_label=True,
                     springy=True,
                     tooltip='number of points for crack-opening'),
                Item('n_G_ipts',
                     show_label=True,
                     springy=True,
                     tooltip=
                     'number of integration points for the random variables'),
                Item('lab',
                     show_label=True,
                     springy=True,
                     tooltip='label of pull-out curve'),
            ),
            Item('figure',
                 style='custom',
                 editor=MPLFigureEditor(),
                 show_label=False),
            label='Pull-out response',
            id='ymb.pullout.figure',
            dock='tab',
        ),
        id='ymb.pullout.split',
        dock='tab',
    ),
                id='ymb.pullout',
                resizable=True,
                scrollable=True,
                dock='tab',
                width=0.8,
                height=0.4)