def plot_activity(self):
     euler = EulerEstimator(
         derivatives=[self.dv_dt, self.dn_dt, self.dm_dt, self.dh_dt],
         point=(0, (self.v_0, self.n_0, self.m_0, self.h_0)))
     plt.plot([n / 2 for n in range(160)],
              [self.s_t(n / 2) for n in range(160)])
     euler.plot([0, 80], step_size=0.02, file_name="photo.png")
Beispiel #2
0
    def plot_activity(self):
        estimator = EulerEstimator(
            derivatives=[self.dV, self.dn_dt, self.dm_dt, self.dh_dt],
            point=(0, (0, self.n_0, self.m_0, self.h_0)))
        plt.plot([n / 2 for n in range(160)],
                 [self.s_t(n / 2) for n in range(160)])

        estimator.plot([0, 80], step_size=0.02, filename="hodgen_huxley.png")
class Neuron:
    def __init__(self, stimulus):
        self.stimulus = stimulus
        self.estimator = EulerEstimator(self.get_derivatives(),
                                        self.get_starting_point())

    def plot_activity(self, filename):
        plt.plot([n / 2 for n in range(160)], [s_t(n / 2) for n in range(160)],
                 zorder=1)
        self.estimator.plot([0, 80], step_size=0.02, filename=filename)

    def get_starting_point(self):
        x = 0.07 * (math.e**3 + 1)
        h_0 = x / (x + 1)
        n_0 = 1 / (1.25 * (math.e - 1) + 1)
        m_0 = 2.5 / (2.5 + 4 * (math.e**2.5 - 1))
        V_0 = 0
        return 0, (V_0, n_0, m_0, h_0)

    def get_derivatives(self):
        return [self.dV(), Neuron.dn, Neuron.dm, Neuron.dh]

    @staticmethod
    def a_n(t, x):
        return 0.01 * (10 - x[0]) / (math.exp(0.1 * (10 - x[0])) - 1)

    @staticmethod
    def b_n(t, x):
        return 0.125 * math.exp(-x[0] / 80)

    @staticmethod
    def a_m(t, x):
        return 0.1 * (25 - x[0]) / (math.exp(0.1 * (25 - x[0])) - 1)

    @staticmethod
    def b_m(t, x):
        return 4 * math.exp(-x[0] / 18)

    @staticmethod
    def a_h(t, x):
        return 0.07 * math.exp(-x[0] / 20)

    @staticmethod
    def b_h(t, x):
        return 1 / (math.exp(0.1 * (30 - x[0])) + 1)

    @staticmethod
    def dn(t, x):
        return Neuron.a_n(t, x) * (1 - x[1]) - Neuron.b_n(t, x) * x[1]

    @staticmethod
    def dm(t, x):
        return Neuron.a_m(t, x) * (1 - x[2]) - Neuron.b_m(t, x) * x[2]

    @staticmethod
    def dh(t, x):
        return Neuron.a_h(t, x) * (1 - x[3]) - Neuron.b_h(t, x) * x[3]

    C = 1
    Vna = 115
    Vk = -12
    VL = 10.6
    _gna = 120
    _gk = 36
    _gl = 0.3

    @staticmethod
    def INa(t, x):
        return Neuron.gna(t, x) * (x[0] - Neuron.Vna)

    @staticmethod
    def gna(t, x):
        return Neuron._gna * x[2]**3 * x[3]

    @staticmethod
    def Ik(t, x):
        return Neuron.gk(t, x) * (x[0] - Neuron.Vk)

    @staticmethod
    def gk(t, x):
        return Neuron._gk * x[1]**4

    @staticmethod
    def IL(t, x):
        return Neuron.gl(t, x) * (x[0] - Neuron.VL)

    @staticmethod
    def gl(t, x):
        return Neuron._gl

    def dV(self):
        return lambda t, x: 1 / Neuron.C * (self.stimulus(t) - Neuron.INa(
            t, x) - Neuron.Ik(t, x) - Neuron.IL(t, x))
Beispiel #4
0
    def plot_activity(self):     
        plt.plot([x/2 for x in range(160)], [self.s_t(n/2) for n in range(160)])

        estimator = EulerEstimator(derivatives = {"dV":(self.dV), "dn_dt":(self.dn_dt), "dm_dt":(self.dm_dt), "dh_dt":(self.dh_dt)},
        point = (0, (0, self.n_zero, self.m_zero, self.h_zero)))
        estimator.plot([0, 80], step_size=0.02,filename="plot.png")
Beispiel #5
0
import sys
sys.path.append('src')
from euler_estimator import EulerEstimator

derivatives = {
    'S': (lambda t, x: -0.01 * 0.03 * x['S'] * x['I']),
    'I': (lambda t, x: 0.01 * 0.03 * x['S'] * x['I'] - 0.02 * x['I']),
    'R': (lambda t, x: 0.02 * x['I'])
}
euler = EulerEstimator(derivatives)

initial_values = {'S': 1000, 'I': 1, 'R': 0}
initial_point = (0, initial_values)

euler.plot(point=initial_point, step_size=0.05, num_steps=4000)
Beispiel #6
0
    "suseptible": (lambda t, x: -0.001 * x["suseptible"] * x["infected"]),
    "infected": (lambda t, x: 0.001 * x["suseptible"] * x["infected"] - 0.05 *
                 x["infected"]),
    "recovered": (lambda t, x: 0.05 * x["infected"])
},
                       point=(0, {
                           "suseptible": 500,
                           "infected": 5,
                           "recovered": 0
                       }))
print("Derivitive: " + str(euler.calc_derivative_at_point()))

# print("Point: "+str(euler.point))
# #(0, (0, 0, 0))
# print("Derivitive: "+str(euler.calc_derivative_at_point()))
# #[1, 0, 0]

# euler.step_forward(0.1)
# print("Point: "+str(euler.point))

# print("Derivitive: "+str(euler.calc_derivative_at_point()))
# [1.1, 0.1, 0]
# euler.step_forward(-0.5)
# print("Point: "+str(euler.point))
# (-0.4, (-0.45, -0.05, 0))

# euler.go_to_input(5, step_size = 2)
# print(euler.point)
# (5, (10.88, 1.09, -9.58))
euler.plot([0, 50], 0.1)
    elif t > 20 and t < 21:
        return 50
    elif t > 30 and t < 40:
        return 50
    elif t > 50 and t < 51:
        return 50
    elif t > 53 and t < 54:
        return 50
    elif t > 56 and t < 57:
        return 50
    elif t > 59 and t < 60:
        return 50
    elif t > 62 and t < 63:
        return 50
    elif t > 65 and t < 66:
        return 50
    return 0


neuron_0 = BiologicalNeuron(stimulus=electrode_voltage)
neuron_1 = BiologicalNeuron()
neuron_2 = BiologicalNeuron()
neurons = [neuron_0, neuron_1, neuron_2]
synapses = [(0, 1), (1, 2)]
network = BiologicalNeuralNetwork(neurons, synapses)
euler = EulerEstimator(derivatives=network.get_derivatives(),
                       point=network.get_starting_point())
plt.plot([n / 2 for n in range(160)],
         [electrode_voltage(n / 2) for n in range(160)])
euler.plot([0, 80], step_size=0.001, filename="biological_neural_network")
Beispiel #8
0
import sys
sys.path.append('src')
from euler_estimator import EulerEstimator


derivatives = {'deer': (lambda t,x: 0.6*x['deer']-0.05*x['wolves']*x['deer']),'wolves': (lambda t,x: -0.9*x['wolves']+0.02*x['wolves']*x['deer'])}
euler = EulerEstimator(derivative = derivatives)

initial_values = {'deer': 100, 'wolves': 10}
initial_point = (0, initial_values)

euler.plot(point=initial_point, step_size=0.001, num_steps=100000)
print("\n Testing point after first step")
euler.step_forward(0.1)
assert euler.point == (1.1, {'a':4.2}), 'Incorrect point after first step'
print("     passed")
 
print("\n Testing derivative after first step")
assert euler.calc_derivative_at_point() == {'a':2.1},'Incorrect derivative after first step'
print("     passed")
 
print("\n Testing point after 2nd step")
euler.step_forward(-0.5)
assert (round(euler.point[0],3),{item:round(euler.point[1][item],3) for item in euler.point[1]})== (0.6, {'a':3.15}), 'Incorrect point after 2nd step'
print("     passed")
 
print("\n Testing go_to_input")
euler.go_to_input(3, step_size = 0.5)
assert (round(euler.point[0],3),{item:round(euler.point[1][item],3) for item in euler.point[1]}) == (3, {'a':9.229}), 'Incorrect final result'
print("     passed")
 


euler = EulerEstimator(
                derivatives = {
    'susceptible': (lambda x: -0.0003*x['susceptible']*x['infected']),
    'infected': (lambda x: 0.0003*x['susceptible']*x['infected'] - 0.02*x['infected']),
    'recovered': (lambda x: 0.02*x['infected'])
},
point = (0, {'susceptible': 1000, 'recovered': 0, 'infected': 1}))

euler.plot([0,100], step_size = 0.001, filename = 'test_plot.png')
from euler_estimator import EulerEstimator
import sys
sys.path.append('src/python')

euler = EulerEstimator([(lambda x, y: x + 1)], (1, [4]))
euler.plot([-5, 5])
Beispiel #11
0
from euler_estimator import EulerEstimator

euler = EulerEstimator(derivatives=[
    (lambda t, x: -0.0003 * x[1] * x[0] + 0.01 * x[1] + 0.001),
    (lambda t, x: -0.02 * x[1] + 0.0003 * x[1] * x[0]),
    (lambda t, x: 0.01 * x[1])
],
                       point=(0, (1000, 1, 0)))
euler.plot([0, 150], step_size=0.001, filename='plot.png')
print('passed')

print('testing step forward...')
point_2 = euler.step_forward(point=initial_point, step_size=0.1)
assert point_2 == (0.1, {'A': 0.1, 'B': 0, 'C': 0})
print('passed')

print('testing calc_derivative_at_point...')
assert euler.calc_derivative_at_point(point_2) == {'A': 1.1, 'B': 0.1, 'C': 0}
print('passed')

print('testing step forward...')
point_3 = euler.step_forward(point=point_2, step_size=-0.5)
point_3 = (point_3[0],
           {key: round(value, 5)
            for key, value in point_3[1].items()})
assert point_3 == (-0.4, {'A': -0.45, 'B': -0.05, 'C': 0})
print('passed')

#assertion error, need to round
# print('testing calc_derivative_at_point...')
# assert euler.calc_estimated_points(point=point_3, step_size=2, num_steps=3) == [
#    (-0.4, {'A': -0.45, 'B': -0.05, 'C': 0}), # starting point
#    (1.6, {'A': 0.65, 'B': -1.05, 'C': -0.2}), # after 1st step
#    (3.6, {'A': 3.95, 'B': -1.85, 'C': -4.4}), # after 2nd step
#    (5.6, {'A': 13.85, 'B': 2.35, 'C': -11.8}) # after 3rd step
# ]
print('passed')

euler.plot(initial_point, 0.01, 500)
 def plot_activity(self):
     euler = EulerEstimator(self.derivatives, self.initial_positions)
     plt.plot([n / 2 for n in range(160)],
              [self.stimulus(n / 2) for n in range(160)])
     euler.plot([0, 80], stepsize=0.02)
Beispiel #14
0
import sys

sys.path.append('src')
from euler_estimator import EulerEstimator

derivatives = {
    'S': (lambda t, x: -0.0003 * x['S'] * x['I']),
    'I': (lambda t, x: 0.0003 * x['S'] * x['I'] - 0.02 * x['I']),
    'R': (lambda t, x: 0.02 * x['I'])
}
euler = EulerEstimator(derivative=derivatives)

initial_values = {'S': 1000, 'I': 1, 'R': 0}
initial_point = (0, initial_values)

euler.plot(point=initial_point, step_size=1, num_steps=300)
import sys

sys.path.append('src/python')
from euler_estimator import EulerEstimator

euler = EulerEstimator([(lambda t, x: -0.0003 * x[0] * x[1]),
                        (lambda t, x: -0.02 * x[1] + 0.0003 * x[0] * x[1]),
                        (lambda t, x: 0.02 * x[1])], (0, [1000, 1, 0]))
euler.plot([0, 350], stepsize=0.001, filename='assignment_50-2.png')
Beispiel #16
0
assert point_2 == (0.1, {'A': 0.1, 'B': 0, 'C': 0}), point_2

assert euler.calc_derivative_at_point(point_2) == {
    'A': 1.1,
    'B': 0.1,
    'C': 0
}, euler.calc_derivative_at_point(point_2)

point_3 = euler.step_forward(point_2, -0.5)
assert point_3 == (-0.4, {'A': -0.45, 'B': -0.05, 'C': 0}), point_3

assert euler.calc_estimated_points(point_3, 2, 3) == [(-0.4, {
    'A': -0.45,
    'B': -0.05,
    'C': 0.0
}), (1.6, {
    'A': 0.65,
    'B': -1.05,
    'C': -0.2
}), (3.6, {
    'A': 3.95,
    'B': -1.85,
    'C': -4.4
}), (5.6, {
    'A': 13.85,
    'B': 2.35,
    'C': -11.8
})]

euler.plot((0, {'A': 0, 'B': 0, 'C': 0}), 0.01, 5)
  int_6 = t >= 56 and t <= 57
  int_7 = t >= 59 and t <= 60
  int_8 = t >= 62 and t <= 63
  int_9 = t >= 65 and t <= 66

  if int_1 or int_2 or int_3 or int_4 or int_5 or int_6 or int_7 or int_8 or int_9:
    return 150
  return 0

################################
### input into EulerEstimator

V_0 = 0
n_0 = alpha_n(0, {'V':V_0})/(alpha_n(0, {'V':V_0})+beta_n(0, {'V':V_0}))
m_0 = alpha_m(0, {'V':V_0})/(alpha_m(0, {'V':V_0})+beta_m(0, {'V':V_0}))
h_0 = alpha_h(0, {'V':V_0})/(alpha_h(0, {'V':V_0})+beta_h(0, {'V':V_0}))

derivatives = {
  'V': dV_dt,
  'n': dn_dt,
  'm': dm_dt,
  'h': dh_dt,
}

euler = EulerEstimator(derivatives)

initial_values = {'V':V_0, 'n':n_0, 'm':m_0, 'h':h_0}
initial_point = (0, initial_values)

euler.plot(point=initial_point, step_size=0.01, num_steps=8000, additional_functions={'stimulus':s})
from euler_estimator import EulerEstimator

derivatives = [(lambda t, x: 0.6 * x[0] - 0.05 * x[0] * x[1]),
               (lambda t, x: -0.9 * x[1] + 0.02 * x[0] * x[1])]
starting_point = (0, (100, 10))

estimator = EulerEstimator(derivatives, starting_point)

estimator.plot([0, 100],
               step_size=0.001,
               filename="epic_assignment_48_plot.png")
Beispiel #19
0
assert euler.calc_derivative_at_point(point_2) == {'A': 1.1, 'B': 0.1, 'C': 0}

point_3 = euler.step_forward(point=point_2, step_size=-0.5)
assert point_3 == (-0.4, {'A': -0.45, 'B': -0.05, 'C': 0})

assert euler.calc_estimated_points(point=point_3, step_size=2,
                                   num_steps=3) == [
                                       (-0.4, {
                                           'A': -0.45,
                                           'B': -0.05,
                                           'C': 0
                                       }),  # starting point 
                                       (1.6, {
                                           'A': 0.65,
                                           'B': -1.05,
                                           'C': -0.2
                                       }),  # after 1st step
                                       (3.6, {
                                           'A': 3.95,
                                           'B': -1.85,
                                           'C': -4.4
                                       }),  # after 2nd step
                                       (5.6, {
                                           'A': 13.85,
                                           'B': 2.35,
                                           'C': -11.8
                                       })  # after 3rd step
                                   ]

euler.plot()
Beispiel #20
0
from euler_estimator import EulerEstimator
derivatives = [
    (lambda t, x: -0.0003 * x[0] * x[1]),
    (lambda t, x: 0.0003 * x[0] * x[1] - 0.02 * x[1] - 0.001 * x[1]),
    (lambda t, x: 0.02 * x[1]), (lambda t, x: 0.001 * x[1])
]
starting_point = (0, (1000, 1, 0, 0))

estimator = EulerEstimator(derivatives, starting_point)

estimator.plot([0, 365], step_size=0.001, filename="quiz_4.png")
Beispiel #21
0
import sys
sys.path.append('src/python')
from euler_estimator import EulerEstimator


euler = EulerEstimator([(lambda t, x: 0.6 * x[0] - 0.05 * x[0] * x[1]),
                        (lambda t, x: -0.9 * x[1] + 0.02 * x[0] * x[1])], (0, [100, 10]))
euler.plot([0, 100], stepsize=0.001, filename='assignment_48-1.png')
Beispiel #22
0
import sys

sys.path.append('src')
from euler_estimator import EulerEstimator

derivatives = {
    'D': (lambda t, x: 0.6 * x['D'] - 0.05 * x['D'] * x['W']),
    'W': (lambda t, x: -0.9 * x['W'] + 0.02 * x['D'] * x['W']),
}

euler = EulerEstimator(derivatives=derivatives)

initial_values = {'D': 100, 'W': 10}
initial_point = (0, initial_values)
euler.plot(initial_point, 0.001, 100000)
Beispiel #23
0
    elif t > 20 and t < 21:
        return 150
    elif t > 30 and t < 40:
        return 150
    elif t > 50 and t < 51:
        return 150
    elif t > 53 and t < 54:
        return 150
    elif t > 56 and t < 57:
        return 150
    elif t > 59 and t < 60:
        return 150
    elif t > 62 and t < 63:
        return 150
    elif t > 65 and t < 66:
        return 150
    return 0


neuron_0 = BiologicalNeuron(stimulus=electrode_voltage)
neuron_1 = BiologicalNeuron()
neuron_2 = BiologicalNeuron()
neurons = [neuron_0, neuron_1, neuron_2]
synapses = [(0, 1), (1, 2)]
network = BiologicalNeuralNetwork(neurons, synapses)
euler = EulerEstimator(derivatives=network.get_derivatives(),
                       point=network.get_starting_point())
plt.plot([n / 2 for n in range(160)],
         [electrode_voltage(n / 2) for n in range(160)])
euler.plot([0, 80], step_size=0.001, file_name="neural_network.png")
Beispiel #24
0
          (0.1, {'1': 0.1, '2': 0, '3': 0}))

do_assert("new derivative", euler.calc_derivative_at_point(),
          {'1': 1.1, '2': 0.1, '3': 0})
euler.step_forward(-0.5)
do_assert("step forward 2", euler.point,
          (-0.4, {'1': -0.45, '2': -0.05, '3': 0}))

euler.go_to_input(5, step_size=2)

# notes to help you debug:

# point: (-0.4, (-0.45, -0.05, 0))
# derivative: (0.55, -0.5, -0.1)
# deltas: (2, (1.1, -1, -0.2))

# point: (1.6, (0.65, -1.05, -0.2))
# derivative: (1.65, -0.4, -2.1)
# deltas: (2, (3.3, -0.8, 4.2))

# point: (3.6, (3.95, -1.85, 4))
# derivative: (4.95, 2.1, -3.7)
# deltas: (1.4, (9.8, 4.2, -7.4))

do_assert("go to input", euler.point[1],
          {'1': 10.88, '2': 1.09, '3': -9.58})

euler.plot([-5, 5], step_size=0.1, filename='plot.png')

print(cstring("&6All Tests Passed!"))
Beispiel #25
0
from euler_estimator import EulerEstimator
derivatives = {
    'susceptible': (lambda t, x: -0.0003 * x['susceptible'] * x['infected']),
    'infected': (lambda t, x: 0.0003 * x['susceptible'] * x['infected'] - 0.02
                 * x['infected']),
    'recovered': (lambda t, x: 0.02 * x['infected'])
}
starting_point = (0, {'susceptible': 1000, 'infected': 1, 'recovered': 0})

estimator = EulerEstimator(derivatives, starting_point)

estimator.plot([0, 365],
               step_size=0.001,
               filename="epic_assignment_50_plot.png")