Beispiel #1
0
def I(n):
    terms = []
    for (p,k) in factor(n):
        if p % 2 == 0 and k>1:
            residues = (1, -1, (1<<k-1)-1, (1<<k-1)+1)
        else:
            residues = (1, -1)
        pk = p**k
        coef = n // pk * modInverse(n // pk, pk)
        terms.append(map(lambda x: x*coef, residues))
    return max(filter(lambda x: x != n-1, (sum(res) % n for res in cross(*terms))))
Beispiel #2
0
def solve():
    piter = allprimes()
    next(piter)
    next(piter)
    p1 = next(piter)
    p2 = next(piter)
    nextMag = 10
    accum = 0
    while p1 <= 1000000:
        while nextMag < p1:
            nextMag *= 10
        accum += p1 + nextMag * ((p2 - p1) * modInverse(nextMag, p2) % p2)
        (p1, p2) = (p2, next(piter))
    return accum
Beispiel #3
0
def solve():
    reverseOps = {
        "D": Polynomial(0, 3),
        "U": Polynomial(Fraction(-1, 2), Fraction(3, 4)),
        "d": Polynomial(Fraction(1, 2), Fraction(3, 2)),
    }

    seq = "UDDDUdddDDUDDddDdDddDDUDDdUUDd"
    poly = reduce(lambda accum, op: reverseOps[op](accum), seq[::-1], Polynomial.X)

    # The resulting polynomial is of the form $(a/b)x + c/b$.  (Note that the
    # denominators are equal.)  We then need to find the smallest $z > 10^{15}$
    # that is in the range of this polynomial, i.e., the smallest $z > 10^{15}$
    # such that its preimage $(z - c/b)(b/a) = (zb - c)/a$ is an integer, i.e.,
    # such that $a$ divides $zb - c$, i.e., such that $z$ is congruent to
    # $cb^{-1}$ _modulo_ $a$.

    a = poly.coef(1).numerator
    b = poly.coef(1).denominator
    c = poly.coef(0).numerator

    rem = (c * modInverse(b, a)) % a
    return (10 ** 15 // a + (10 ** 15 % a > rem)) * a + rem
Beispiel #4
0
def S(p):
    inv2 = modInverse(-2, p)
    inv3 = modInverse(-3, p)
    inv4 = modInverse(-4, p)
    return (inv2 * (1 + inv3 * (1 + inv4))) % p