Beispiel #1
0
    def test_element_design(self):

        grandmean = GrandMeanElement()
        design = grandmean.element_design(
            TestGrandMeanElement.SimulatedObservationStructure())
        self.assertTrue(isinstance(design, GrandMeanDesign))
        self.assertEqual(2, design.number_of_observations)
Beispiel #2
0
    def test_element_prior(self):

        prior = GrandMeanElement().element_prior(
            CovariateHyperparameters(3.3333))
        self.assertTrue(isinstance(prior, CovariatePrior))
        self.assertEqual(1, prior.number_of_state_parameters)
        self.assertEqual(3.3333, prior.hyperparameters.value)
Beispiel #3
0
    def test_element_design(self):

        obs = TestCombinationElement.SimulatedObservationStructure()
        design = CombinationElement([GrandMeanElement(),
                                     LocalElement(0)]).element_design(obs)
        self.assertTrue(isinstance(design, CombinationDesign))
        self.assertEqual(2, len(design.designlist))
        self.assertTrue(isinstance(design.designlist[0], GrandMeanDesign))
        self.assertTrue(isinstance(design.designlist[1], LocalDesign))
Beispiel #4
0
    def test_element_prior(self):

        hyperparameters = CombinationHyperparameters([
            CovariateHyperparameters(23.6),
            LocalHyperparameters(log_sigma=0.1, log_rho=1.2)
        ])
        prior = CombinationElement([GrandMeanElement(),
                                    LocalElement(0)
                                    ]).element_prior(hyperparameters)
        self.assertTrue(isinstance(prior, CombinationPrior))
        self.assertEqual(2, len(prior.priorlist))
        self.assertTrue(isinstance(prior.priorlist[0], CovariatePrior))
        self.assertTrue(isinstance(prior.priorlist[1], LocalPrior))
Beispiel #5
0
    def __init__(self, covariates_descriptor):
        if covariates_descriptor is not None:
            loader = LoadCovariateElement(covariates_descriptor)
            loader.check_keys()
            covariate_elements, covariate_hyperparameters = loader.load_covariates_and_hyperparameters()
            print('The following fields have been added as covariates of the climatology model')
            print(loader.data.keys())
        else:
            covariate_elements, covariate_hyperparameters = [], []

        setup = ClimatologySetup()
        
        super(ClimatologyDefinition, self).__init__(
            CombinationElement( [SeasonalElement(setup.n_triangulation_divisions, 
                                                 setup.n_harmonics, 
                                                 include_local_mean=True), GrandMeanElement()] + covariate_elements),
            CombinationHyperparameters( [SeasonalHyperparameters(setup.n_spatial_components, 
                                                                 numpy.log(setup.amplitude), 
                                                                 numpy.log(numpy.radians(setup.space_length_scale))), 
                                         CovariateHyperparameters(numpy.log(setup.grandmean_amplitude))] + covariate_hyperparameters))
Beispiel #6
0
    def test_init(self):

        c = CombinationElement([GrandMeanElement(), LocalElement(0)])
        self.assertEqual(2, len(c.combination))
        self.assertTrue(isinstance(c.combination[0], GrandMeanElement))
        self.assertTrue(isinstance(c.combination[1], LocalElement))
Beispiel #7
0
def main():

    print 'Advanced standard example using a few days of EUSTACE data'
    parser = argparse.ArgumentParser(description='Advanced standard example using a few days of EUSTACE data')
    parser.add_argument('outpath', help='directory where the output should be redirected')
    parser.add_argument('--json_descriptor', default = None, help='a json descriptor containing the covariates to include in the climatology model')
    parser.add_argument('--land_biases', action='store_true', help='include insitu land homogenization bias terms')
    parser.add_argument('--global_biases', action='store_true', help='include global satellite bias terms')
    parser.add_argument('--n_iterations', type=int, default=5, help='number of solving iterations')
    args = parser.parse_args()

    # Input data path
    basepath = os.path.join('/work/scratch/eustace/rawbinary3')

    # Days to process
    time_indices = range(int(days_since_epoch(datetime(2006, 2, 1))), int(days_since_epoch(datetime(2006, 2, 2))))

    # Sources to use
    sources = [ 'surfaceairmodel_land', 'surfaceairmodel_ocean', 'surfaceairmodel_ice', 'insitu_land', 'insitu_ocean' ]    

    #SETUP
    # setup for the seasonal core: climatology covariates setup read from file
    seasonal_setup = {'n_triangulation_divisions':5,
		      'n_harmonics':4,
		      'n_spatial_components':6,
		      'amplitude':2.,
		      'space_length_scale':5., # length scale in units of degrees
		     }
    grandmean_amplitude = 15.0
    
    # setup for the large scale component
    spacetime_setup = {'n_triangulation_divisions':2,
		       'alpha':2,
		       'starttime':0,
		       'endtime':10.,
		       'n_nodes':2,
		       'overlap_factor':2.5,
		       'H':1,
		       'amplitude':1.,
		       'space_lenght_scale':15.0, # length scale in units of degrees
		       'time_length_scale':15.0   # length scal in units of days
		      }
    bias_amplitude = .9

    # setup for the local component
    local_setup = {'n_triangulation_divisions':6,
                   'amplitude':2.,
                   'space_length_scale':2. # length scale in units of degrees
                  }
    globalbias_amplitude = 15.0

    # CLIMATOLOGY COMPONENT: combining the seasonal core along with latitude harmonics, altitude and coastal effects    
    if args.json_descriptor is not None:
      loader = LoadCovariateElement(args.json_descriptor)
      loader.check_keys()
      covariate_elements, covariate_hyperparameters = loader.load_covariates_and_hyperparameters()
      print('The following fields have been added as covariates of the climatology model')
      print(loader.data.keys())
    else:
      covariate_elements, covariate_hyperparameters = [], []

    climatology_element = CombinationElement( [SeasonalElement(n_triangulation_divisions=seasonal_setup['n_triangulation_divisions'], 
							       n_harmonics=seasonal_setup['n_harmonics'], 
							       include_local_mean=True), 
					       GrandMeanElement()]+covariate_elements)       
    climatology_hyperparameters = CombinationHyperparameters( [SeasonalHyperparameters(n_spatial_components=seasonal_setup['n_spatial_components'], 
										       common_log_sigma=numpy.log(seasonal_setup['amplitude']), 
										       common_log_rho=numpy.log(numpy.radians(seasonal_setup['space_length_scale']))), 
							       CovariateHyperparameters(numpy.log(grandmean_amplitude))] + covariate_hyperparameters )
    climatology_component = SpaceTimeComponent(ComponentStorage_InMemory(climatology_element, climatology_hyperparameters), SpaceTimeComponentSolutionStorage_InMemory(), 
                                                                         compute_uncertainties=True, method='APPROXIMATED',
                                                                         compute_sample=True, sample_size=definitions.GLOBAL_SAMPLE_SHAPE[3])

    # LARGE SCALE (kronecker product) COMPONENT: combining large scale trends with bias terms accounting for homogeneization effects    
    if args.land_biases:
	bias_element, bias_hyperparameters = [InsituLandBiasElement(BREAKPOINTS_FILE)], [CovariateHyperparameters(numpy.log(bias_amplitude))]
	print('Adding bias terms for insitu land homogenization')
    else:
	bias_element, bias_hyperparameters = [], []

    large_scale_element = CombinationElement( [SpaceTimeKroneckerElement(n_triangulation_divisions=spacetime_setup['n_triangulation_divisions'], 
                                                                         alpha=spacetime_setup['alpha'], 
                                                                         starttime=spacetime_setup['starttime'], 
                                                                         endtime=spacetime_setup['endtime'], 
                                                                         n_nodes=spacetime_setup['n_nodes'], 
                                                                         overlap_factor=spacetime_setup['overlap_factor'], 
                                                                         H=spacetime_setup['H'])] + bias_element)
    large_scale_hyperparameters = CombinationHyperparameters( [SpaceTimeSPDEHyperparameters(space_log_sigma=numpy.log(spacetime_setup['amplitude']),
                                                                                            space_log_rho=numpy.log(numpy.radians(spacetime_setup['space_lenght_scale'])), 
                                                                                            time_log_rho=numpy.log(spacetime_setup['time_length_scale']))] + bias_hyperparameters) 
    large_scale_component =  SpaceTimeComponent(ComponentStorage_InMemory(large_scale_element, large_scale_hyperparameters), SpaceTimeComponentSolutionStorage_InMemory(), 
                                                                          compute_uncertainties=True, method='APPROXIMATED',
                                                                          compute_sample=True, sample_size=definitions.GLOBAL_SAMPLE_SHAPE[3])
                                 
    # LOCAL COMPONENT: combining local scale variations with global satellite bias terms    
    if args.global_biases:
	bias_elements = [BiasElement(groupname, 1) for groupname in GLOBAL_BIASES_GROUP_LIST]
	bias_hyperparameters = [CovariateHyperparameters(numpy.log(globalbias_amplitude)) for index in range(len(GLOBAL_BIASES_GROUP_LIST))]
	print('Adding global bias terms for all the surfaces')
    else:
	bias_elements, bias_hyperparameters = [], []

    local_scale_element = CombinationElement([LocalElement(n_triangulation_divisions=local_setup['n_triangulation_divisions'])] + bias_elements)
    local_scale_hyperparameters = CombinationHyperparameters([LocalHyperparameters(log_sigma=numpy.log(local_setup['amplitude']), 
                                                                                   log_rho=numpy.log(numpy.radians(local_setup['space_length_scale'])))] + bias_hyperparameters)
    local_component = SpatialComponent(ComponentStorage_InMemory(local_scale_element, local_scale_hyperparameters), SpatialComponentSolutionStorage_InMemory(), 
                                                                 compute_uncertainties=True, method='APPROXIMATED',
                                                                 compute_sample=True, sample_size=definitions.GLOBAL_SAMPLE_SHAPE[3])

    # Analysis system using the specified components, for the Tmean observable
    print 'Analysing inputs'

    analysis_system = AnalysisSystem(
        [ climatology_component, large_scale_component, local_component ],
        ObservationSource.TMEAN)

    # Object to load raw binary inputs at time indices
    inputloaders = [ AnalysisSystemInputLoaderRawBinary_Sources(basepath, source, time_indices) for source in sources ]

    for iteration in range(args.n_iterations):
	
	message = 'Iteration {}'.format(iteration)
	print(message)
	
	# Update with data
	analysis_system.update(inputloaders, time_indices)

    print 'Computing outputs'

    # Produce an output for each time index
    for time_index in time_indices:

        # Get date for output
        outputdate = inputloaders[0].datetime_at_time_index(time_index)
        print 'Evaluating output grid: ', outputdate

        #Configure output grid
        outputstructure = OutputRectilinearGridStructure(
            time_index, outputdate,
            latitudes=numpy.linspace(-90.+definitions.GLOBAL_FIELD_RESOLUTION/2., 90.-definitions.GLOBAL_FIELD_RESOLUTION/2., num=definitions.GLOBAL_FIELD_SHAPE[1]),
            longitudes=numpy.linspace(-180.+definitions.GLOBAL_FIELD_RESOLUTION/2., 180.-definitions.GLOBAL_FIELD_RESOLUTION/2., num=definitions.GLOBAL_FIELD_SHAPE[2]))

        # Evaluate expected value at these locations
        for field in ['MAP', 'post_STD']:
	  print 'Evaluating: ',field
	  result_expected_value = analysis_system.evaluate_expected_value('MAP', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1,1], 1000)
	  result_expected_uncertainties = analysis_system.evaluate_expected_value('post_STD', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1,1], 1000)
	  
	print 'Evaluating: climatology fraction'
	climatology_fraction = analysis_system.evaluate_climatology_fraction(outputstructure, [1,1], 1000)

	print 'Evaluating: the sample'
	sample = analysis_system.evaluate_projected_sample(outputstructure)

	# Make output filename
        pathname = 'eustace_example_output_{0:04d}{1:02d}{2:02d}.nc'.format(outputdate.year, outputdate.month, outputdate.day)
	pathname = os.path.join(args.outpath, pathname)
        print 'Saving: ', pathname

        # Save results
        filebuilder = FileBuilderGlobalField(
            pathname, 
            time_index,
            'Infilling Example',
            'UNVERSIONED',
            definitions.TAS.name,
            '',
            'Example data only',
            'eustace.analysis.advanced_standard.examples.example_eustace_few_days', 
            '')
        filebuilder.add_global_field(definitions.TAS, result_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(definitions.TASUNCERTAINTY, result_expected_uncertainties.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(definitions.TAS_CLIMATOLOGY_FRACTION, climatology_fraction.reshape(definitions.GLOBAL_FIELD_SHAPE))

	for index in range(definitions.GLOBAL_SAMPLE_SHAPE[3]):
	  variable = copy.deepcopy(definitions.TASENSEMBLE)
	  variable.name = variable.name + '_' + str(index)
	  selected_sample = sample[:,index].ravel()+result_expected_value
	  filebuilder.add_global_field(variable, selected_sample.reshape(definitions.GLOBAL_FIELD_SHAPE))
	  
	filebuilder.save_and_close()

    print 'Complete'
Beispiel #8
0
def main():

    print 'Advanced standard example using a few days of EUSTACE data'
    parser = argparse.ArgumentParser(
        description='Advanced standard example using a few days of EUSTACE data'
    )
    parser.add_argument('outpath',
                        help='directory where the output should be redirected')
    parser.add_argument(
        '--json_descriptor',
        default=None,
        help=
        'a json descriptor containing the covariates to include in the climatology model'
    )
    parser.add_argument('--land_biases',
                        action='store_true',
                        help='include insitu land homogenization bias terms')
    parser.add_argument('--global_biases',
                        action='store_true',
                        help='include global satellite bias terms')
    parser.add_argument('--n_iterations',
                        type=int,
                        default=5,
                        help='number of solving iterations')
    args = parser.parse_args()

    # Input data path
    basepath = os.path.join('/work/scratch/eustace/rawbinary3')

    # Days to process
    #time_indices = range(int(days_since_epoch(datetime(2006, 2, 1))), int(days_since_epoch(datetime(2006, 2, 2))))
    #time_indices = range(int(days_since_epoch(datetime(1906, 2, 1))), int(days_since_epoch(datetime(1906, 2, 2))))

    date_list = [
        datetime(2006, 1, 1) + relativedelta(days=k) for k in range(3)
    ]

    #backwards_list = [date_list[i] for i in range(11, -1, -1)]
    #date_list = backwards_list

    time_indices = [int(days_since_epoch(date)) for date in date_list]

    # Sources to use
    sources = [
        'surfaceairmodel_land', 'surfaceairmodel_ocean', 'surfaceairmodel_ice',
        'insitu_land', 'insitu_ocean'
    ]
    sources = ['insitu_land', 'insitu_ocean']
    #sources = [ 'surfaceairmodel_land' ]
    # CLIMATOLOGY COMPONENT: combining the seasonal core along with latitude harmonics, altitude and coastal effects

    if args.json_descriptor is not None:
        loader = LoadCovariateElement(args.json_descriptor)
        loader.check_keys()
        covariate_elements, covariate_hyperparameters = loader.load_covariates_and_hyperparameters(
        )
        print(
            'The following fields have been added as covariates of the climatology model'
        )
        print(loader.data.keys())
    else:
        covariate_elements, covariate_hyperparameters = [], []

    #climatology_element = CombinationElement( [SeasonalElement(n_triangulation_divisions=2, n_harmonics=2, include_local_mean=False), GrandMeanElement()]+covariate_elements)
    #climatology_hyperparameters = CombinationHyperparameters( [SeasonalHyperparameters(n_spatial_components=2, common_log_sigma=0.0, common_log_rho=0.0), CovariateHyperparameters(numpy.log(15.0))] + covariate_hyperparameters )

    climatology_element = CombinationElement([
        GrandMeanElement(),
    ] + covariate_elements)
    climatology_hyperparameters = CombinationHyperparameters([
        CovariateHyperparameters(numpy.log(15.0)),
    ] + covariate_hyperparameters)

    #climatology_element =SeasonalElement(n_triangulation_divisions=2, n_harmonics=2, include_local_mean=False)
    #climatology_hyperparameters = SeasonalHyperparameters(n_spatial_components=2, common_log_sigma=0.0, common_log_rho=0.0)

    climatology_component = SpaceTimeComponent(
        ComponentStorage_InMemory(climatology_element,
                                  climatology_hyperparameters),
        SpaceTimeComponentSolutionStorage_InMemory(),
        compute_uncertainties=True,
        method='APPROXIMATED')

    # LARGE SCALE (kronecker product) COMPONENT: combining large scale trends with bias terms accounting for homogeneization effects

    if args.land_biases:
        bias_element, bias_hyperparameters = [
            InsituLandBiasElement(BREAKPOINTS_FILE)
        ], [CovariateHyperparameters(numpy.log(.9))]
        print('Adding bias terms for insitu land homogenization')
    else:
        bias_element, bias_hyperparameters = [], []

    large_scale_element = CombinationElement([
        SpaceTimeKroneckerElement(n_triangulation_divisions=2,
                                  alpha=2,
                                  starttime=-30,
                                  endtime=365 * 1 + 30,
                                  n_nodes=12 * 1 + 2,
                                  overlap_factor=2.5,
                                  H=1)
    ] + bias_element)
    large_scale_hyperparameters = CombinationHyperparameters([
        SpaceTimeSPDEHyperparameters(space_log_sigma=0.0,
                                     space_log_rho=numpy.log(
                                         numpy.radians(15.0)),
                                     time_log_rho=numpy.log(15.0))
    ] + bias_hyperparameters)
    large_scale_component = SpaceTimeComponent(
        ComponentStorage_InMemory(large_scale_element,
                                  large_scale_hyperparameters),
        SpaceTimeComponentSolutionStorage_InMemory(),
        compute_uncertainties=True,
        method='APPROXIMATED')

    # LOCAL COMPONENT: combining local scale variations with global satellite bias terms

    if args.global_biases:
        bias_elements = [
            BiasElement(groupname, 1) for groupname in GLOBAL_BIASES_GROUP_LIST
        ]
        bias_hyperparameters = [
            CovariateHyperparameters(numpy.log(15.0)) for index in range(3)
        ]
        print('Adding global bias terms for all the surfaces')
    else:
        bias_elements, bias_hyperparameters = [], []

    n_triangulation_divisions_local = 7
    local_log_sigma = numpy.log(5)
    local_log_rho = numpy.log(numpy.radians(5.0))
    local_element = NonStationaryLocal(
        n_triangulation_divisions=n_triangulation_divisions_local)
    n_local_nodes = local_element.spde.n_latent_variables()
    local_scale_element = CombinationElement([local_element] + bias_elements)
    local_hyperparameters = ExpandedLocalHyperparameters(
        log_sigma=numpy.repeat(local_log_sigma, n_local_nodes),
        log_rho=numpy.repeat(local_log_rho, n_local_nodes))
    local_scale_hyperparameters = CombinationHyperparameters(
        [local_hyperparameters] + bias_hyperparameters)
    local_component = DelayedSpatialComponent(
        ComponentStorage_InMemory(local_scale_element,
                                  local_scale_hyperparameters),
        SpatialComponentSolutionStorage_InMemory(),
        compute_uncertainties=True,
        method='APPROXIMATED')
    print "hyperparameter storage:", local_component.storage.hyperparameters
    print 'Analysing inputs'

    # Analysis system using the specified components, for the Tmean observable
    ##analysis_system = AnalysisSystem(
    ##    [ climatology_component, large_scale_component, local_component ],
    ##    ObservationSource.TMEAN)

    analysis_system = OptimizationSystem(
        [climatology_component, local_component], ObservationSource.TMEAN)

    # Object to load raw binary inputs at time indices
    inputloaders = [
        AnalysisSystemInputLoaderRawBinary_Sources(basepath, source,
                                                   time_indices)
        for source in sources
    ]

    for iteration in range(args.n_iterations):

        message = 'Iteration {}'.format(iteration)
        print(message)

        # Update with data
        analysis_system.update(inputloaders, time_indices)

    ##################################################

    # Optimize local model hyperparameters

    # Loop over local regions, generate optimization systems, fit hyperparameters and save

    # split spde and bias models for local component into two components
    global_spde_sub_component_definition = ComponentStorage_InMemory(
        CombinationElement([local_element]),
        CombinationHyperparameters([local_hyperparameters]))
    global_spde_sub_component_storage_solution = SpatialComponentSolutionStorage_InMemory(
    )
    global_spde_sub_component = DelayedSpatialComponent(
        global_spde_sub_component_definition,
        global_spde_sub_component_storage_solution)

    bias_sub_component_definition = ComponentStorage_InMemory(
        CombinationElement(bias_elements),
        CombinationHyperparameters(bias_hyperparameters))
    bias_sub_component_storage_solution = SpatialComponentSolutionStorage_InMemory(
    )
    bias_sub_component = DelayedSpatialComponent(
        bias_sub_component_definition, bias_sub_component_storage_solution)

    element_optimisation_flags = [True, False, False,
                                  False]  # one spde, three biases

    for time_key in time_indices:
        split_states_time(local_component, global_spde_sub_component,
                          bias_sub_component, element_optimisation_flags,
                          time_key)

    # Define subregions and extract their states
    neighbourhood_level = 1

    n_subregions = global_spde_sub_component.storage.element_read(
    ).combination[0].spde.n_triangles_at_level(neighbourhood_level)
    hyperparameter_file_template = "local_hyperparameters.%i.%i.%i.npy"

    fit_hyperparameters = True
    optimization_component_index = 2
    if fit_hyperparameters:
        for region_index in range(n_subregions):
            # Setup model for local subregion of neighours with super triangle
            view_flags = [
                True,
            ]
            region_element = CombinationElement([
                LocalSubRegion(n_triangulation_divisions_local,
                               neighbourhood_level, region_index)
            ])
            region_hyperparameters = ExtendedCombinationHyperparameters([
                LocalHyperparameters(log_sigma=local_log_sigma,
                                     log_rho=local_log_rho)
            ])
            region_component_storage_solution = SpatialComponentSolutionStorage_InMemory(
            )
            region_sub_component = DelayedSpatialComponent(
                ComponentStorage_InMemory(region_element,
                                          region_hyperparameters),
                region_component_storage_solution)

            for time_key in time_indices:
                print "region_index, time_key:", region_index, time_key
                extract_local_view_states_time(global_spde_sub_component,
                                               region_sub_component,
                                               view_flags, time_key)

            print "running optimization for region:", region_index

            region_optimization_system = OptimizationSystem([
                climatology_component, bias_sub_component, region_sub_component
            ], ObservationSource.TMEAN)

            for time_key in time_indices:
                region_optimization_system.update_component_time(
                    inputloaders, optimization_component_index, time_key)

            # commented version that works for few days inputs
            #region_optimization_system.components[optimization_component_index].component_solution().optimize()
            #region_optimization_system.components[optimization_component_index].storage.hyperparameters.get_array()
            #hyperparameter_file = os.path.join(args.outpath, hyperparameter_file_template % (n_triangulation_divisions_local, neighbourhood_level, region_index) )
            #region_sub_component.storage.hyperparameters.values_to_npy_savefile( hyperparameter_file )

            # replaced with version for full processing based json dump of input files - need to generate the input_descriptor dict
            hyperparameter_file = os.path.join(
                args.outpath, hyperparameter_file_template %
                (n_triangulation_divisions_local, neighbourhood_level,
                 region_index))
            region_optimization_system.process_inputs(
                input_descriptor, optimization_component_index, time_indices)
            region_optimization_system.optimize_component(
                optimization_component_index,
                hyperparameter_storage_file=hyperparameter_file)

            fitted_hyperparameters_converted = region_sub_component.storage.hyperparameters.get_array(
            )
            fitted_hyperparameters_converted[0] = numpy.exp(
                fitted_hyperparameters_converted[0])
            fitted_hyperparameters_converted[1] = numpy.exp(
                fitted_hyperparameters_converted[1]) * 180.0 / numpy.pi
            print 'fitted_hyperparameters_converted:', fitted_hyperparameters_converted

    # Setup model for the super triangle without neighbours for hyperparameter merging
    region_spdes = []
    region_hyperparameter_values = []
    for region_index in range(n_subregions):
        # Redefine the region sub component as a supertriangle rather than a neighbourhood
        region_element = CombinationElement([
            LocalSuperTriangle(n_triangulation_divisions_local,
                               neighbourhood_level, region_index)
        ])
        region_hyperparameters = ExtendedCombinationHyperparameters([
            LocalHyperparameters(log_sigma=local_log_sigma,
                                 log_rho=local_log_rho)
        ])
        region_component_storage_solution = SpatialComponentSolutionStorage_InMemory(
        )
        region_sub_component = DelayedSpatialComponent(
            ComponentStorage_InMemory(region_element, region_hyperparameters),
            region_component_storage_solution)

        # Read the optimized hyperparameters
        hyperparameter_file = os.path.join(
            args.outpath,
            hyperparameter_file_template % (n_triangulation_divisions_local,
                                            neighbourhood_level, region_index))
        region_sub_component.storage.hyperparameters.values_from_npy_savefile(
            hyperparameter_file)

        # Append the spde model and hyperparameters to their lists for merging
        region_spdes.append(region_element.combination[0].spde)
        region_hyperparameter_values.append(
            region_sub_component.storage.hyperparameters.get_array())

    # merge and save hyperparameters
    full_spde = local_element.spde
    new_hyperparameter_values, global_sigma_design, global_rho_design = full_spde.merge_local_parameterisations(
        region_spdes, region_hyperparameter_values, merge_method='exp_average')

    local_hyperparameters.set_array(new_hyperparameter_values)
    hyperparameter_file_merged = "merged_hyperparameters.%i.%i.npy" % (
        n_triangulation_divisions_local, neighbourhood_level)
    local_hyperparameters.values_to_npy_savefile(
        os.path.join(args.outpath, hyperparameter_file_merged))

    # Refit local model with the optimized hyperparameters
    analysis_system.update_component(inputloaders, 1, time_indices)

    ##################################################

    print 'Computing outputs'

    # Produce an output for each time index
    for time_index in time_indices:

        # Get date for output
        outputdate = inputloaders[0].datetime_at_time_index(time_index)
        print 'Evaluating output grid: ', outputdate

        #Configure output grid
        outputstructure = OutputRectilinearGridStructure(
            time_index,
            outputdate,
            latitudes=numpy.linspace(-89.875,
                                     89.875,
                                     num=definitions.GLOBAL_FIELD_SHAPE[1]),
            longitudes=numpy.linspace(-179.875,
                                      179.875,
                                      num=definitions.GLOBAL_FIELD_SHAPE[2]))

        # print 'Size of grid : ', outputstructure.number_of_observations()

        # Evaluate expected value at these locations
        result_expected_value = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'POINTWISE')
        result_expected_uncertainties = analysis_system.evaluate_expected_value(
            'post_STD', outputstructure, 'POINTWISE')

        # Make output filename
        pathname = 'eustace_example_output_{0:04d}{1:02d}{2:02d}.nc'.format(
            outputdate.year, outputdate.month, outputdate.day)
        pathname = os.path.join(args.outpath, pathname)
        print 'Saving: ', pathname

        # Save results
        filebuilder = FileBuilderGlobalField(
            pathname, time_index, 'Infilling Example', 'UNVERSIONED',
            definitions.TAS.name, '', 'Example data only',
            'eustace.analysis.advanced_standard.examples.example_eustace_few_days',
            '')
        filebuilder.add_global_field(
            definitions.TAS,
            result_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            definitions.TASUNCERTAINTY,
            result_expected_uncertainties.reshape(
                definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.save_and_close()

    print 'Complete'
Beispiel #9
0
    def __init__(self, covariates_descriptor):
        if covariates_descriptor is not None:
            loader = LoadCovariateElement(covariates_descriptor)
            loader.check_keys()
            covariate_elements, covariate_hyperparameters = loader.load_covariates_and_hyperparameters(
            )
            print(
                'The following fields have been added as covariates of the climatology model'
            )
            print(loader.data.keys())
        else:
            covariate_elements, covariate_hyperparameters = [], []

        setup = MovingClimatologySetup()

        model_elements = CombinationElement([
            AnnualKroneckerElement(
                setup.seasonal_spline_settings.n_triangulation_divisions, setup
                .seasonal_spline_settings.alpha, setup.seasonal_spline_settings
                .starttime, setup.seasonal_spline_settings.endtime,
                setup.seasonal_spline_settings.n_nodes,
                setup.seasonal_spline_settings.overlap_factor,
                setup.seasonal_spline_settings.H,
                setup.seasonal_spline_settings.wrap_dimensions),
            #SeasonalElement(setup.seasonal_settings.n_triangulation_divisions,
            #setup.seasonal_settings.n_harmonics,
            #include_local_mean=setup.seasonal_settings.include_local_mean),
            GrandMeanElement(),
            LatitudeSplineElement(
                setup.latitude_settings.alpha,
                setup.latitude_settings.n_nodes,
                setup.latitude_settings.overlap_factor,
                setup.latitude_settings.H,
            ),
        ] + covariate_elements)

        seasonal_hyperparameters = SeasonalHyperparameters(
            setup.seasonal_settings.n_spatial_components,
            numpy.log(setup.seasonal_settings.amplitude),
            numpy.log(numpy.radians(
                setup.seasonal_settings.space_length_scale)))

        seasonal_spline_hyperparameters = SpaceTimeSPDEHyperparameters(
            numpy.log(setup.seasonal_spline_settings.amplitude),
            numpy.log(
                numpy.radians(
                    setup.seasonal_spline_settings.space_length_scale)),
            numpy.log(setup.seasonal_spline_settings.time_length_scale))

        seasonal_params = zip(
            numpy.log(setup.seasonal_settings.harmonic_amplitudes),
            numpy.log(
                numpy.radians(setup.seasonal_settings.harmonic_length_scales)))
        seasonal_hyperparameters.set_array(
            [val for pair in seasonal_params for val in pair])

        model_hyperparameters = CombinationHyperparameters([
            seasonal_spline_hyperparameters,
            #seasonal_hyperparameters,
            CovariateHyperparameters(
                numpy.log(setup.covariate_settings.grandmean_amplitude)),
            #SpaceTimeSPDEHyperparameters(numpy.log(setup.slow_settings.amplitude),
            #numpy.log(numpy.radians(setup.slow_settings.space_length_scale)),
            #numpy.log(setup.slow_settings.time_length_scale)),
            LocalHyperparameters(
                numpy.log(setup.latitude_settings.amplitude),
                numpy.log(setup.latitude_settings.length_scale))
        ] + covariate_hyperparameters)

        super(ClimatologyDefinition, self).__init__(model_elements,
                                                    model_hyperparameters)