def pred_loop(): evalu_model, x_ = eval_model.build(cpu) global pred_file_name while True: vid, cur_fr, n, fileName = q.get() # pred_file_name = fileName.split('/') # # pred_file_name = pred_file_name[-1].replace(".zip","_prediction.csv") # pred_file_name = pred_file_name[-1].replace(".zip","")[-4:] x_.set_value(vid.astype("float32"), borrow=True) pred = evalu_model()[0][0] pred_p = pred.max() pred_idx = pred.argmax() + 1 fr_start = cur_fr + step - n_f fr_end = cur_fr + step predict(pred_idx, pred_p, fr_start) if cur_fr + 2 * step >= n: reinit()
def pred_loop(): evalu_model, x_ = eval_model.build(cpu) global pred_file_name # evalu_model, x_ = eval_model.build() while True: # print "waiting" # s_time = time.time() # print "pred_loop waiting" vid, cur_fr, n, fileName = q.get() # print "waited",(time.time()-s_time)/1000.,"ms" pred_file_name = fileName.split('/') pred_file_name = pred_file_name[-1].replace(".zip", "_prediction.csv") # print "get" # print vid.shape, cur_fr x_.set_value(vid.astype("float32"), borrow=True) pred = evalu_model()[0][0] pred_p = pred.max() pred_idx = pred.argmax() + 1 # fps = int(1./((time.time()-time_start)/step)) fr_start = cur_fr + step - n_f fr_end = cur_fr + step # print pred_idx,"\t", "\t",pred_p,"\t",fr_start, "-",fr_end,"\t",fps,'fps' predict(pred_idx, pred_p, fr_start) # print v_new.shape # for i in xrange(v_new.shape[0]): # for j in xrange(v_new.shape[1]): # for k in xrange(v_new.shape[2]): # play_vid(v_new[i,j,k],wait=0) # cur_fr += step # print cur_fr, int(1./((time.time()-time_start)/step)),'fps' if cur_fr + 2 * step >= n: reinit()
def pred_loop(): evalu_model, x_ = eval_model.build(cpu) global pred_file_name # evalu_model, x_ = eval_model.build() while True: # print "waiting" # s_time = time.time() # print "pred_loop waiting" vid, cur_fr,n,fileName = q.get() # print "waited",(time.time()-s_time)/1000.,"ms" pred_file_name = fileName.split('/') pred_file_name = pred_file_name[-1].replace(".zip","_prediction.csv") # print "get" # print vid.shape, cur_fr x_.set_value(vid.astype("float32"),borrow=True) pred = evalu_model()[0][0] pred_p = pred.max() pred_idx = pred.argmax()+1 # fps = int(1./((time.time()-time_start)/step)) fr_start = cur_fr+step-n_f fr_end = cur_fr+step # print pred_idx,"\t", "\t",pred_p,"\t",fr_start, "-",fr_end,"\t",fps,'fps' predict(pred_idx,pred_p,fr_start) # print v_new.shape # for i in xrange(v_new.shape[0]): # for j in xrange(v_new.shape[1]): # for k in xrange(v_new.shape[2]): # play_vid(v_new[i,j,k],wait=0) # cur_fr += step # print cur_fr, int(1./((time.time()-time_start)/step)),'fps' if cur_fr+2*step>=n: reinit()
predictions.append(pred) cur_fr += step predictions = array(predictions,float32) pred_file_name = fileName.split('/') pred_file_name = pred_file_name[-1].replace(".zip","_prediction.zip") file = GzipFile(dst+"/"+pred_file_name, 'wb') dump(predictions, file, -1) file.close() # print cur_fr, int(1./((time.time()-time_start)/step)),'fps' #reinit() # @profile evalu_model, x_ = eval_model.build(cpu) def pred_loop(vid, cur_fr,n,fileName): global pred_file_name # evalu_model, x_ = eval_model.build() # while True: # print "waiting" # s_time = time.time() # print "pred_loop waiting" # vid, cur_fr,n,fileName = q.get() # print "waited",(time.time()-s_time)/1000.,"ms" pred_file_name = fileName.split('/') pred_file_name = pred_file_name[-1].replace(".zip","_prediction.csv")
cur_fr += step predictions = array(predictions, float32) pred_file_name = fileName.split('/') pred_file_name = pred_file_name[-1].replace(".zip", "_prediction.zip") file = GzipFile(dst + "/" + pred_file_name, 'wb') dump(predictions, file, -1) file.close() # print cur_fr, int(1./((time.time()-time_start)/step)),'fps' #reinit() # @profile evalu_model, x_ = eval_model.build(cpu) def pred_loop(vid, cur_fr, n, fileName): global pred_file_name # evalu_model, x_ = eval_model.build() # while True: # print "waiting" # s_time = time.time() # print "pred_loop waiting" # vid, cur_fr,n,fileName = q.get() # print "waited",(time.time()-s_time)/1000.,"ms"