def test_predict_ts_with_not_X_index(ts_data):
    X, y = ts_data
    X = X.reset_index(drop=True)
    assert not isinstance(X.index, pd.DatetimeIndex)

    m_clf = ARIMARegressor()
    clf_ = m_clf.fit(X=X, y=y)
    with pytest.raises(
            ValueError,
            match=
            "If not it will look for the datetime column in the index of X."):
        clf_.predict(X)
def test_fit_predict_ts_with_X_and_y_index(mock_get_dates, mock_format_dates,
                                           ts_data_seasonal):
    X, y = ts_data_seasonal
    assert isinstance(X.index, pd.DatetimeIndex)
    assert isinstance(y.index, pd.DatetimeIndex)

    mock_get_dates.return_value = (X.index, X)
    mock_format_dates.return_value = (X, y, None)

    fh_ = forecasting.ForecastingHorizon(y.index, is_relative=False)

    a_clf = sktime_arima.AutoARIMA()
    clf = a_clf.fit(X=X, y=y)
    y_pred_sk = clf.predict(fh=fh_, X=X)

    m_clf = ARIMARegressor(d=None)
    m_clf.fit(X=X, y=y)
    mock_format_dates.return_value = (X, y, fh_)
    y_pred = m_clf.predict(X=X)

    assert (y_pred_sk == y_pred.to_series()).all()
Beispiel #3
0
def test_fit_predict_ts_with_X_and_y_index(ts_data):
    X, y = ts_data
    assert isinstance(X.index, pd.DatetimeIndex)
    assert isinstance(y.index, pd.DatetimeIndex)

    a_clf = arima.ARIMA(endog=y, exog=X, order=(1, 0, 0), trend='n', dates=X.index)
    clf = a_clf.fit()
    y_pred_a = clf.predict()

    m_clf = ARIMARegressor(p=1, d=0, q=0)
    clf_ = m_clf.fit(X=X, y=y)
    y_pred = clf_.predict(X=X)

    assert (y_pred == y_pred_a).all()
Beispiel #4
0
def test_fit_predict_date_col_named(ts_data):
    X, y = ts_data

    a_clf = arima.ARIMA(endog=y, exog=X, order=(1, 0, 0), trend='n', dates=X.index)
    clf = a_clf.fit()
    y_pred_a = clf.predict(params=(1, 0, 0))

    X = X.reset_index()
    assert not isinstance(X.index, pd.DatetimeIndex)
    m_clf = ARIMARegressor(p=1, d=0, q=0, date_column='index')
    clf_ = m_clf.fit(X=X, y=y)
    y_pred = clf_.predict(X=X, y=y)

    assert (y_pred == y_pred_a).all()
def test_fit_predict_date_index_named_out_of_sample(X_none, ts_data_seasonal):
    X, y = ts_data_seasonal

    fh_ = forecasting.ForecastingHorizon(y[250:].index, is_relative=False)

    a_clf = sktime_arima.AutoARIMA()
    if X_none:
        clf = a_clf.fit(y=y[:250])
        y_pred_sk = clf.predict(fh=fh_)
    else:
        clf = a_clf.fit(X=X[:250], y=y[:250])
        y_pred_sk = clf.predict(fh=fh_, X=X[250:])

    X = X.reset_index()
    assert not isinstance(X.index, pd.DatetimeIndex)
    m_clf = ARIMARegressor(date_index='index', d=None)
    if X_none:
        m_clf.fit(X=None, y=y[:250])
        y_pred = m_clf.predict(X=None, y=y[250:])
    else:
        m_clf.fit(X=X[:250], y=y[:250])
        y_pred = m_clf.predict(X=X[250:], y=y[250:])

    assert (y_pred_sk.to_period('D') == y_pred.to_series()).all()
Beispiel #6
0
def test_fit_predict_ts_with_y_not_X_index_with_iterable_p_and_q(ts_data):
    X, y = ts_data

    a_clf = arima.ARIMA(endog=y, exog=X, order=([1, 2], 0, [1, 2]), trend='n', dates=X.index)
    clf = a_clf.fit()
    y_pred_a = clf.predict(params=(1, 0, 0))

    X_no_ind = X.reset_index(drop=True)
    assert isinstance(y.index, pd.DatetimeIndex)
    assert not isinstance(X_no_ind.index, pd.DatetimeIndex)

    m_clf = ARIMARegressor(p=[1, 2], d=0, q=[1, 2])
    clf_ = m_clf.fit(X=X_no_ind, y=y)
    y_pred = clf_.predict(X=X, y=y)

    assert (y_pred == y_pred_a).all()
Beispiel #7
0
def test_feature_importance(ts_data):
    X, y = ts_data
    clf = ARIMARegressor()
    clf.fit(X, y)
    clf.feature_importance == np.zeros(1)
Beispiel #8
0
def test_fit_ts_without_y(ts_data):
    X, y = ts_data

    clf = ARIMARegressor(p=1, d=0, q=0)
    with pytest.raises(ValueError, match="ARIMA Regressor requires y as input."):
        clf.fit(X=X)
def test_model_instance(ts_data):
    X, y = ts_data
    clf = ARIMARegressor()
    fitted = clf.fit(X, y)
    assert isinstance(fitted, ARIMARegressor)