Beispiel #1
0
def accuracyMicro(y_test, predictions):
    """
    Accuracy Micro of our model

    Params
    ======
    y_test : sparse or dense matrix (n_samples, n_labels)
        Matrix of labels used in the test phase
    predictions: sparse or dense matrix (n_samples, n_labels)
        Matrix of predicted labels given by our model
    Returns
    =======
    accuracymicro : float
        Accuracy Micro of our model
    """
    accuracymicro = 0.0
    TP, FP, TN, FN = multilabelConfussionMatrix(y_test, predictions)
    TPMicro, FPMicro, TNMicro, FNMicro = multilabelMicroConfussionMatrix(
        TP, FP, TN, FN)

    if (TPMicro + FPMicro + TNMicro + FNMicro) != 0:
        accuracymicro = float(
            (TPMicro + TNMicro) / (TPMicro + FPMicro + TNMicro + FNMicro))

    return accuracymicro
Beispiel #2
0
def fbetaMicro(y_test, predictions, beta=1):
    """
    FBeta Micro of our model

    Params
    ======
    y_test : sparse or dense matrix (n_samples, n_labels)
        Matrix of labels used in the test phase
    predictions: sparse or dense matrix (n_samples, n_labels)
        Matrix of predicted labels given by our model
    Returns
    =======
    fbetamicro : float
        FBeta Micro of our model
    """
    fbetamicro = 0.0
    TP, FP, TN, FN = multilabelConfussionMatrix(y_test, predictions)
    TPMicro, FPMicro, TNMicro, FNMicro = multilabelMicroConfussionMatrix(
        TP, FP, TN, FN)

    num = float((1 + pow(beta, 2)) * TPMicro)
    den = float((1 + pow(beta, 2)) * TPMicro + pow(beta, 2) * FNMicro +
                FPMicro)
    fbetamicro = float(num / den)

    return fbetamicro
Beispiel #3
0
def fbetaMacro(y_test, predictions, beta=1):
    """
    FBeta Macro of our model

    Params
    ======
    y_test : sparse or dense matrix (n_samples, n_labels)
        Matrix of labels used in the test phase
    predictions: sparse or dense matrix (n_samples, n_labels)
        Matrix of predicted labels given by our model
    Returns
    =======
    fbetamacro : float
        FBeta Macro of our model
    """
    fbetamacro = 0.0
    TP, FP, TN, FN = multilabelConfussionMatrix(y_test, predictions)

    for i in range(len(TP)):
        num = float((1 + pow(beta, 2)) * TP[i])
        den = float((1 + pow(beta, 2)) * TP[i] + pow(beta, 2) * FN[i] + FP[i])
        if den != 0:
            fbetamacro = fbetamacro + num / den

    fbetamacro = fbetamacro / len(TP)
    return fbetamacro
Beispiel #4
0
def precisionMicro(y_test, predictions):
    """
    Precision Micro of our model

    Params
    ======
    y_test : sparse or dense matrix (n_samples, n_labels)
        Matrix of labels used in the test phase
    predictions: sparse or dense matrix (n_samples, n_labels)
        Matrix of predicted labels given by our model
    Returns
    =======
    precisionmicro : float
        Precision micro of our model
    """
    precisionmicro = 0.0
    TP, FP, TN, FN = multilabelConfussionMatrix(y_test, predictions)
    TPMicro, FPMicro, TNMicro, FNMicro = multilabelMicroConfussionMatrix(
        TP, FP, TN, FN)
    if (TPMicro + FPMicro) != 0:
        precisionmicro = float(TPMicro / (TPMicro + FPMicro))

    return precisionmicro
Beispiel #5
0
def precisionMacro(y_test, predictions):
    """
    Precision Macro of our model

    Params
    ======
    y_test : sparse or dense matrix (n_samples, n_labels)
        Matrix of labels used in the test phase
    predictions: sparse or dense matrix (n_samples, n_labels)
        Matrix of predicted labels given by our model
    Returns
    =======
    precisionmacro : float
        Precision macro of our model
    """
    precisionmacro = 0.0
    TP, FP, TN, FN = multilabelConfussionMatrix(y_test, predictions)
    for i in range(len(TP)):
        if TP[i] + FP[i] != 0:
            precisionmacro = precisionmacro + (TP[i] / (TP[i] + FP[i]))

    precisionmacro = float(precisionmacro / len(TP))
    return precisionmacro
Beispiel #6
0
def accuracyMacro(y_test, predictions):
    """
    Accuracy Macro of our model

    Params
    ======
    y_test : sparse or dense matrix (n_samples, n_labels)
        Matrix of labels used in the test phase
    predictions: sparse or dense matrix (n_samples, n_labels)
        Matrix of predicted labels given by our model
    Returns
    =======
    accuracymacro : float
        Accuracy Macro of our model
    """
    accuracymacro = 0.0
    TP, FP, TN, FN = multilabelConfussionMatrix(y_test, predictions)
    for i in range(len(TP)):
        accuracymacro = accuracymacro + ((TP[i] + TN[i]) /
                                         (TP[i] + FP[i] + TN[i] + FN[i]))

    accuracymacro = float(accuracymacro / len(TP))

    return accuracymacro