Beispiel #1
0
    def train(self):

        
        prpr = Preprocess(self.config)
        prpr.preprocess(self.config['path_data'],"train")
        labels,sentences,vocabulary,voca_embs,sens_rep,labels_index,labels_rep = prpr.load_preprocessed()


        train_size = int(0.9*len(sens_rep))
        dev_size = len(sens_rep)-train_size

        merged_rep = list()
        for i in range(len(sens_rep)):
            element = list()
            element.append(sens_rep[i])
            element.append(labels_rep[i])
            merged_rep.append(element)
        
        train_set,dev_set = torch.utils.data.random_split(merged_rep,[train_size,dev_size])
        x_train,x_dev,y_train,y_dev = [],[],[],[]
        for i in range(train_size):
            x_train.append(train_set[i][0])
            y_train.append(train_set[i][1])
        for i in range(dev_size):
            x_dev.append(dev_set[i][0])
            y_dev.append(dev_set[i][1])   

        xy_train = (x_train,y_train)
        xy_dev = (x_dev,y_dev)
        

        if(self.config["model"] == 'bow' and bool(self.config['from_pretrained'] == "True")):
            qc_train = QCDataset(xy_train)
            loader_train = DataLoader(qc_train,batch_size=int(self.config["batch_size"]),collate_fn=qc_collate_fn_bow)
            qc_dev = QCDataset(xy_dev)
            loader_dev = DataLoader(qc_dev,batch_size=int(self.config["batch_size"]),collate_fn=qc_collate_fn_bow)

            model = BOW_FFNN_PRE(torch.FloatTensor(voca_embs),\
                int(self.config['hidden_size']),len(labels_index),bool(self.config['freeze']=="True"))

        if(self.config["model"] == 'bow' and bool(self.config['from_pretrained'] == "False")):
            qc_train = QCDataset(xy_train)
            loader_train = DataLoader(qc_train,batch_size=int(self.config["batch_size"]),collate_fn=qc_collate_fn_bow)
            qc_dev = QCDataset(xy_dev)
            loader_dev = DataLoader(qc_dev,batch_size=int(self.config["batch_size"]),collate_fn=qc_collate_fn_bow)
            
            model = BOW_FFNN_RANDOM(len(vocabulary)+1,int(self.config['word_embedding_dim']),\
                int(self.config['hidden_size']),len(labels_index),bool(self.config['freeze']=="True"))

        if(self.config["model"] == 'bilstm' and bool(self.config['from_pretrained'] == "True")):
            qc_train = QCDataset(xy_train)
            loader_train = DataLoader(qc_train,batch_size=int(self.config["batch_size"]),collate_fn=qc_collate_fn_bilstm)
            qc_dev = QCDataset(xy_dev)
            loader_dev = DataLoader(qc_dev,batch_size=int(self.config["batch_size"]),collate_fn=qc_collate_fn_bilstm)
            
            model = BiLSTM_FFNN_PRE(torch.FloatTensor(voca_embs),\
                int(self.config['bilstm_hidden_size']),int(self.config['hidden_size']),len(labels_index),bool(self.config['freeze']=="True"))

        if(self.config["model"] == 'bilstm' and bool(self.config['from_pretrained'] == "False")):
            qc_train = QCDataset(xy_train)
            loader_train = DataLoader(qc_train,batch_size=int(self.config["batch_size"]),collate_fn=qc_collate_fn_bilstm)
            qc_dev = QCDataset(xy_dev)
            loader_dev = DataLoader(qc_dev,batch_size=int(self.config["batch_size"]),collate_fn=qc_collate_fn_bilstm)

            model = BiLSTM_FFNN_RANDOM(len(vocabulary)+1,int(self.config['word_embedding_dim']),\
                int(self.config['bilstm_hidden_size']),int(self.config['hidden_size']),len(labels_index),bool(self.config['freeze']=="True"))


        criterion = torch.nn.CrossEntropyLoss()
        optimizer = torch.optim.SGD(model.parameters(),float(self.config['lr_param']),float(self.config['sgd_momentum']))

        model.train()
        early_stopping,best_accuracy = 0,0
        if(self.config['model']=='bilstm'):
            for epoch in range(int(self.config['epoch'])):
                batch = 1
                for data,label,length in loader_train:
                    optimizer.zero_grad()
                    y_pred = model(data,length)
                    loss = criterion(y_pred,torch.tensor(label)) 
                    batch += 1
                    loss.backward()
                    optimizer.step()
                    acc,_,_ = get_accuracy_bilstm(model, loader_dev)
                    if acc > best_accuracy:
                        best_accuracy = acc
                        early_stopping = 0
                        torch.save(model, self.config["path_model"])
                        print('Epoch {}, batch {}, best accuracy: {}'.format(epoch+1, batch, best_accuracy))
                    else :
                        early_stopping += 1
                    if early_stopping >= int(self.config["early_stopping"]):
                        print("Early stopping!")
                        break

            model = torch.load(self.config["path_model"])
            acc,y_real,y_pre = get_accuracy_bilstm(model, loader_dev)
            conf_mat = get_confusion_matrix(y_real,y_pre,len(labels_index))
            micro_f1 = get_micro_f1(conf_mat)
            macro_f1 = get_macro_f1(conf_mat)
            print( "The accuray after training is : " , acc )
            print("Confusion Matrix:\n",conf_mat)
            print("Micro F1: ",micro_f1)
            print("Macro F1: ",macro_f1)

        if(self.config['model']=='bow'):
            for epoch in range(int(self.config['epoch'])):
                batch = 1
                for data,label in loader_train:
                    optimizer.zero_grad()
                    y_pred = model(data)
                    loss = criterion(y_pred,torch.tensor(label)) 
                    batch += 1
                    loss.backward()
                    optimizer.step()
                    acc,_,_ = get_accuracy_bow(model, loader_dev)
                    if acc > best_accuracy:
                        best_accuracy = acc
                        early_stopping = 0
                        torch.save(model, self.config["path_model"])
                        print('Epoch {}, batch {}, best accuracy: {}'.format(epoch+1, batch, best_accuracy))
                    else :
                        early_stopping += 1
                    if early_stopping >= int(self.config["early_stopping"]):
                        print("Early stopping!")
                        break

            model = torch.load(self.config["path_model"])
            acc,y_real,y_pre = get_accuracy_bow(model, loader_dev)
            conf_mat = get_confusion_matrix(y_real,y_pre,len(labels_index))
            micro_f1 = get_micro_f1(conf_mat)
            macro_f1 = get_macro_f1(conf_mat)
            print( "The accuray after training is : " , acc )
            print("Confusion Matrix:\n",conf_mat)
            print("Micro F1: ",micro_f1)
            print("Macro F1: ",macro_f1)
Beispiel #2
0
    def train(self):

        # Preprocess the data
        prpr = Preprocess(self.config)
        # Comment this line below to skip the data preprocessing if you have preprocessed the data before (save time)
        prpr.preprocess(self.config['path_data'], "train")
        # Get all essential data preprocessing results
        labels, sentences, vocabulary, voca_embs, sens_rep, labels_index, labels_rep = prpr.load_preprocessed(
        )

        # Train:Dev=9:1
        train_size = int(0.9 * len(sens_rep))
        dev_size = len(sens_rep) - train_size
        # Combine the representation of sentences and labels for data split
        merged_rep = list()
        for i in range(len(sens_rep)):
            element = list()
            element.append(sens_rep[i])
            element.append(labels_rep[i])
            merged_rep.append(element)
        # Set random seed to make the result repeatable
        torch.manual_seed(0)
        # Randomly split the data
        train_set, dev_set = torch.utils.data.random_split(
            merged_rep, [train_size, dev_size])
        # Unpack the splitted data
        x_train, x_dev, y_train, y_dev = [], [], [], []
        for i in range(train_size):
            x_train.append(train_set[i][0])
            y_train.append(train_set[i][1])
        for i in range(dev_size):
            x_dev.append(dev_set[i][0])
            y_dev.append(dev_set[i][1])
        # For objects of type QCDataset
        xy_train = (x_train, y_train)
        xy_dev = (x_dev, y_dev)

        if self.config['model'] == 'bow_ens':
            self.ens_bow(train_set, dev_set, voca_embs, vocabulary,
                         labels_index)
            return
        if self.config['model'] == 'bilstm_ens':
            self.ens_bilstm(train_set, dev_set, voca_embs, vocabulary,
                            labels_index)
            return
        if self.config['model'] == 'bow_bilstm_ens':
            self.ens_bow_bilstm(train_set, dev_set, voca_embs, vocabulary,
                                labels_index)
            return

        # Set up the dataloaders and models
        if self.config["model"] == 'bow':
            qc_train = QCDataset(xy_train)
            loader_train = DataLoader(qc_train,
                                      batch_size=int(
                                          self.config["batch_size"]),
                                      collate_fn=qc_collate_fn_bow)
            qc_dev = QCDataset(xy_dev)
            loader_dev = DataLoader(qc_dev,
                                    batch_size=int(self.config["batch_size"]),
                                    collate_fn=qc_collate_fn_bow)
        if self.config["model"] == 'bilstm' or self.config[
                "model"] == 'bow_bilstm':
            qc_train = QCDataset(xy_train)
            loader_train = DataLoader(qc_train,
                                      batch_size=int(
                                          self.config["batch_size"]),
                                      collate_fn=qc_collate_fn_bilstm)
            qc_dev = QCDataset(xy_dev)
            loader_dev = DataLoader(qc_dev,
                                    batch_size=int(self.config["batch_size"]),
                                    collate_fn=qc_collate_fn_bilstm)

        if (self.config["model"] == 'bow'
                and bool(self.config['from_pretrained'] == "True")):
            model = BOW_FFNN_PRE(torch.FloatTensor(voca_embs),\
                int(self.config['hidden_size']),len(labels_index),bool(self.config['freeze']=="True"))

        if (self.config["model"] == 'bow'
                and bool(self.config['from_pretrained'] == "False")):
            model = BOW_FFNN_RANDOM(len(vocabulary)+1,int(self.config['word_embedding_dim']),\
                int(self.config['hidden_size']),len(labels_index),bool(self.config['freeze']=="True"))

        if (self.config["model"] == 'bilstm'
                and bool(self.config['from_pretrained'] == "True")):
            model = BiLSTM_FFNN_PRE(torch.FloatTensor(voca_embs),\
                int(self.config['bilstm_hidden_size']),int(self.config['hidden_size']),len(labels_index),bool(self.config['freeze']=="True"))

        if (self.config["model"] == 'bilstm'
                and bool(self.config['from_pretrained'] == "False")):
            model = BiLSTM_FFNN_RANDOM(len(vocabulary)+1,int(self.config['word_embedding_dim']),\
                int(self.config['bilstm_hidden_size']),int(self.config['hidden_size']),len(labels_index),bool(self.config['freeze']=="True"))

        if (self.config["model"] == 'bow_bilstm'
                and bool(self.config['from_pretrained'] == "True")):
            model = BOW_BiLSTM_PRE(torch.FloatTensor(voca_embs),\
                int(self.config['bilstm_hidden_size']),int(self.config['hidden_size']),len(labels_index),bool(self.config['freeze']=="True"))

        if (self.config["model"] == 'bow_bilstm'
                and bool(self.config['from_pretrained'] == "False")):
            model = BOW_BiLSTM_RANDOM(len(vocabulary)+1,int(self.config['word_embedding_dim']),\
                int(self.config['bilstm_hidden_size']),int(self.config['hidden_size']),len(labels_index),bool(self.config['freeze']=="True"))

        # Set the criterion as CrossEntropyLoss
        criterion = torch.nn.CrossEntropyLoss()
        # Use SGD optimizer, set learning rate and momentum
        optimizer = torch.optim.SGD(model.parameters(),
                                    float(self.config['lr_param']),
                                    float(self.config['sgd_momentum']))
        # Start to train the FFNN
        model.train()
        early_stopping, best_accuracy = 0, 0
        if (self.config['model'] == 'bilstm'
                or self.config['model'] == 'bow_bilstm'):
            for epoch in range(int(self.config['epoch'])):
                batch = 1
                # Use dataloader to load data in batch fashion
                for data, label, length in loader_train:
                    optimizer.zero_grad()
                    y_pred = model(data, length)
                    loss = criterion(y_pred, torch.tensor(label))
                    batch += 1
                    loss.backward()
                    optimizer.step()
                    # Calculate the accuracy of model using development set
                    acc, _, _ = get_accuracy_bilstm(model, loader_dev)
                    # If model gets better
                    if acc > best_accuracy:
                        # Refresh the best accuracy record
                        best_accuracy = acc
                        # Reset early stopping counter to zero
                        early_stopping = 0
                        # Save current model
                        torch.save(model, self.config["path_model"])
                        # Print the current result
                        print('Epoch {}, batch {}, best accuracy: {}'.format(
                            epoch + 1, batch, best_accuracy))
                    else:
                        # If the model doesn't perform better, increase early stopping counter by one
                        early_stopping += 1
                    if early_stopping >= int(self.config["early_stopping"]):
                        # If the early stopping counter exceeds the threshold, stop training the models
                        print("Early stopping!")
                        break
            # Load the best model
            model = torch.load(self.config["path_model"])
            # Get the accuracy of model on dev set, get the actual and predicted value of labels
            acc, y_real, y_pre = get_accuracy_bilstm(model, loader_dev)
            # Get the confusion matrix of results on dev set
            conf_mat = get_confusion_matrix(y_real, y_pre, len(labels_index))
            # Compute the micro and marco F1
            micro_f1 = get_micro_f1(conf_mat)
            macro_f1, f1 = get_macro_f1(conf_mat)
            print("The accuray after training is : ", acc)
            print("Confusion Matrix:\n", conf_mat)
            print("Micro F1: ", micro_f1)
            print("Macro F1: ", macro_f1)
            output = open(self.config["path_eval_result"], 'w')
            print("F1-score of each classes:\n", file=output)
            for i in range(len(labels_index)):
                print(list(labels_index.keys())[i], f1[i], file=output)
            print("{0:<15}\t{1:<15}\t{2}".format("Actual", "Prediction",
                                                 "Correct?"),
                  file=output)
            for i, j in zip(y_real, y_pre):
                real = list(labels_index.keys())[list(
                    labels_index.values()).index(i)]
                pre = list(labels_index.keys())[list(
                    labels_index.values()).index(j)]
                if i == j:
                    print("{0:<15}\t{1:<15}\t{2}".format(real, pre, "True"),
                          file=output)
                else:
                    print("{0:<15}\t{1:<15}\t{2}".format(real, pre, "False"),
                          file=output)
            print("The accuray after training is: ",
                  acc,
                  '\n',
                  "Confusion Matrix:\n",
                  conf_mat,
                  '\n',
                  "Micro F1: ",
                  micro_f1,
                  '\n',
                  "Macro F1: ",
                  macro_f1,
                  file=output)
            output.close()

        if (self.config['model'] == 'bow'):
            for epoch in range(int(self.config['epoch'])):
                batch = 1
                for data, label in loader_train:
                    optimizer.zero_grad()
                    y_pred = model(data)
                    loss = criterion(y_pred, torch.tensor(label))
                    batch += 1
                    loss.backward()
                    optimizer.step()
                    acc, _, _ = get_accuracy_bow(model, loader_dev)
                    if acc > best_accuracy:
                        best_accuracy = acc
                        early_stopping = 0
                        torch.save(model, self.config["path_model"])
                        print('Epoch {}, batch {}, best accuracy: {}'.format(
                            epoch + 1, batch, best_accuracy))
                    else:
                        early_stopping += 1
                    if early_stopping >= int(self.config["early_stopping"]):
                        print("Early stopping!")
                        break

            model = torch.load(self.config["path_model"])
            acc, y_real, y_pre = get_accuracy_bow(model, loader_dev)
            conf_mat = get_confusion_matrix(y_real, y_pre, len(labels_index))
            micro_f1 = get_micro_f1(conf_mat)
            macro_f1, f1 = get_macro_f1(conf_mat)
            print("The accuray after training is : ", acc)
            print("Confusion Matrix:\n", conf_mat)
            print("Micro F1: ", micro_f1)
            print("Macro F1: ", macro_f1)
            output = open(self.config["path_eval_result"], 'w')
            print("F1-score of each classes:\n", file=output)
            for i in range(len(labels_index)):
                print(list(labels_index.keys())[i], f1[i], file=output)
            print("{0:<15}\t{1:<15}\t{2}".format("Actual", "Prediction",
                                                 "Correct?"),
                  file=output)
            for i, j in zip(y_real, y_pre):
                real = list(labels_index.keys())[list(
                    labels_index.values()).index(i)]
                pre = list(labels_index.keys())[list(
                    labels_index.values()).index(j)]
                if i == j:
                    print("{0:<15}\t{1:<15}\t{2}".format(real, pre, "True"),
                          file=output)
                else:
                    print("{0:<15}\t{1:<15}\t{2}".format(real, pre, "False"),
                          file=output)
            print("The accuray after training is: ",
                  acc,
                  '\n',
                  "Confusion Matrix:\n",
                  conf_mat,
                  '\n',
                  "Micro F1: ",
                  micro_f1,
                  '\n',
                  "Macro F1: ",
                  macro_f1,
                  file=output)
            output.close()
Beispiel #3
0
    def ens_bow_bilstm(self, train_set, dev_set, voca_embs, vocabulary,
                       labels_index):
        models = list()
        for ens in range(int(self.config['ensemble_size'])):
            print("Current model", self.config['path_model'] + '.' + str(ens))
            # Set random seed to make the result repeatable
            torch.manual_seed(ens)
            # Randomly split the data
            t_s_ens, d_s_ens = torch.utils.data.random_split(
                train_set, [
                    int(0.9 * len(train_set)),
                    len(train_set) - int(0.9 * len(train_set))
                ])
            # Unpack the splitted data
            x_train, x_dev, y_train, y_dev = [], [], [], []
            for i in range(len(t_s_ens)):
                x_train.append(t_s_ens[i][0])
                y_train.append(t_s_ens[i][1])
            for i in range(len(d_s_ens)):
                x_dev.append(d_s_ens[i][0])
                y_dev.append(d_s_ens[i][1])
            # For objects of type QCDataset
            xy_train = (x_train, y_train)
            xy_dev = (x_dev, y_dev)
            qc_train = QCDataset(xy_train)
            loader_train = DataLoader(qc_train,
                                      batch_size=int(
                                          self.config["batch_size"]),
                                      collate_fn=qc_collate_fn_bilstm)
            qc_dev = QCDataset(xy_dev)
            loader_dev = DataLoader(qc_dev,
                                    batch_size=int(self.config["batch_size"]),
                                    collate_fn=qc_collate_fn_bilstm)
            if bool(self.config['from_pretrained'] == "True"):
                model = BOW_BiLSTM_PRE(torch.FloatTensor(voca_embs),\
                    int(self.config['bilstm_hidden_size']),int(self.config['hidden_size']),len(labels_index),bool(self.config['freeze']=="True"))
            else:
                model = BOW_BiLSTM_RANDOM(len(vocabulary)+1,int(self.config['word_embedding_dim']),\
                    int(self.config['bilstm_hidden_size']),int(self.config['hidden_size']),len(labels_index),bool(self.config['freeze']=="True"))
            # Set the criterion as CrossEntropyLoss
            criterion = torch.nn.CrossEntropyLoss()
            # Use SGD optimizer, set learning rate and momentum
            optimizer = torch.optim.SGD(model.parameters(),
                                        float(self.config['lr_param']),
                                        float(self.config['sgd_momentum']))
            model.train()
            early_stopping, best_accuracy = 0, 0
            for epoch in range(int(self.config['epoch'])):
                batch = 1
                for data, label, length in loader_train:
                    optimizer.zero_grad()
                    y_pred = model(data, length)
                    loss = criterion(y_pred, torch.tensor(label))
                    batch += 1
                    loss.backward()
                    optimizer.step()
                    # Calculate the accuracy of model using development set
                    acc, _, _ = get_accuracy_bilstm(model, loader_dev)
                    # If model gets better
                    if acc > best_accuracy:
                        # Refresh the best accuracy record
                        best_accuracy = acc
                        # Reset early stopping counter to zero
                        early_stopping = 0
                        # Save current model
                        torch.save(model,
                                   self.config["path_model"] + '.' + str(ens))
                        # Print the current result
                        print('Epoch {}, batch {}, best accuracy: {}'.format(
                            epoch + 1, batch, best_accuracy))
                    else:
                        # If the model doesn't perform better, increase early stopping counter by one
                        early_stopping += 1
                    if early_stopping >= int(self.config["early_stopping"]):
                        # If the early stopping counter exceeds the threshold, stop training the models
                        print("Early stopping!")
                        break
            model = torch.load(self.config["path_model"] + '.' + str(ens))
            models.append(model)
            acc, y_real, y_pre = get_accuracy_bilstm(model, loader_dev)
            conf_mat = get_confusion_matrix(y_real, y_pre, len(labels_index))
            micro_f1 = get_micro_f1(conf_mat)
            macro_f1, f1 = get_macro_f1(conf_mat)
            print("The accuray after training is : ", acc)
            print("Confusion Matrix:\n", conf_mat)
            print("Micro F1: ", micro_f1)
            print("Macro F1: ", macro_f1)
            output = open(self.config["path_eval_result"], 'a')
            print("Ensemble Model: {}\n".format(ens), file=output)
            print("{0:<15}\t{1:<15}\t{2}".format("Actual", "Prediction",
                                                 "Correct?"),
                  file=output)
            for i, j in zip(y_real, y_pre):
                real = list(labels_index.keys())[list(
                    labels_index.values()).index(i)]
                pre = list(labels_index.keys())[list(
                    labels_index.values()).index(j)]
                if i == j:
                    print("{0:<15}\t{1:<15}\t{2}".format(real, pre, "True"),
                          file=output)
                else:
                    print("{0:<15}\t{1:<15}\t{2}".format(real, pre, "False"),
                          file=output)
            print("The accuray after training is: ",
                  acc,
                  '\n',
                  "Confusion Matrix:\n",
                  conf_mat,
                  '\n',
                  "Micro F1: ",
                  micro_f1,
                  '\n',
                  "Macro F1: ",
                  macro_f1,
                  file=output)
            output.close()
        x_dev_ens, y_dev_ens = [], []
        for i in range(len(dev_set)):
            x_dev_ens.append(dev_set[i][0])
            y_dev_ens.append(dev_set[i][1])
        lengths = list()
        for sen in x_dev_ens:
            lengths.append(len(sen))
        x_dev_ens = torch.nn.utils.rnn.pad_sequence(
            x_dev_ens, padding_value=0)  # important
        accs, y_pred_ens = get_accuracy_ens_bilstm(models, x_dev_ens,
                                                   y_dev_ens, lengths)
        conf_mat = get_confusion_matrix(y_dev_ens, y_pred_ens,
                                        len(labels_index))
        micro_f1 = get_micro_f1(conf_mat)
        macro_f1, f1 = get_macro_f1(conf_mat)
        output = open(self.config["path_eval_result"], 'a')
        print("F1-score of each classes:\n", file=output)
        for i in range(len(labels_index)):
            print(list(labels_index.keys())[i], f1[i], file=output)
        print("Ensembled Result: \n", file=output)
        print("{0:<15}\t{1:<15}\t{2}".format("Actual", "Prediction",
                                             "Correct?"),
              file=output)
        for i, j in zip(y_dev_ens, y_pred_ens):
            real = list(labels_index.keys())[list(
                labels_index.values()).index(i)]
            pre = list(labels_index.keys())[list(
                labels_index.values()).index(j)]
            if i == j:
                print("{0:<15}\t{1:<15}\t{2}".format(real, pre, "True"),
                      file=output)
            else:
                print("{0:<15}\t{1:<15}\t{2}".format(real, pre, "False"),
                      file=output)

        print("The accuracy of {} models are: ".format(len(models)),
              file=output)
        for i in range(len(accs) - 1):
            print(str(accs[i]) + " ", file=output)
        print("\nThe ensembled accuracy is: {}\n".format(accs[len(accs) - 1]),
              file=output)
        print("Confusion Matrix:\n",
              conf_mat,
              "\nMicro F1: ",
              micro_f1,
              "\nMacro F1: ",
              macro_f1,
              file=output)
        output.close()
Beispiel #4
0
    def test(self):
        prpr = Preprocess(self.config)
        prpr.preprocess(self.config['path_test'], "test")
        labels, sentences, vocabulary, voca_embs, sens_rep, labels_index, labels_rep = prpr.load_preprocessed(
        )

        y_real = labels_rep
        lengths = list()
        for sen in sens_rep:
            lengths.append(len(sen))

        if (self.config["model"] == 'bow_ens'):
            models = list()
            for ens in range(int(self.config["ensemble_size"])):
                models.append(
                    torch.load(self.config["path_model"] + '.' + str(ens)))
            x = sens_rep
            accs, y_pre = get_accuracy_ens_bow(models, x, y_real)
            conf_mat = get_confusion_matrix(y_real, y_pre, len(labels_index))
            micro_f1 = get_micro_f1(conf_mat)
            macro_f1, f1 = get_macro_f1(conf_mat)
            output = open(self.config["path_eval_result"], 'w')
            print("F1-score of each classes:\n", file=output)
            for i in range(len(labels_index)):
                print(list(labels_index.keys())[i], f1[i], file=output)
            print("{0:<15}\t{1:<15}\t{2}".format("Actual", "Prediction",
                                                 "Correct?"),
                  file=output)
            for i, j in zip(y_real, y_pre):
                real = list(labels_index.keys())[list(
                    labels_index.values()).index(i)]
                pre = list(labels_index.keys())[list(
                    labels_index.values()).index(j)]
                if i == j:
                    print("{0:<15}\t{1:<15}\t{2}".format(real, pre, "True"),
                          file=output)
                else:
                    print("{0:<15}\t{1:<15}\t{2}".format(real, pre, "False"),
                          file=output)
            print("The accuracy of {} models are: ".format(len(models)),
                  file=output)
            for i in range(len(accs) - 1):
                print(str(accs[i]) + " ", file=output)
            print("\nThe ensembled accuracy is: {}\n".format(accs[len(accs) -
                                                                  1]),
                  file=output)
            print("Confusion Matrix:\n",
                  conf_mat,
                  "\nMicro F1: ",
                  micro_f1,
                  "\nMacro F1: ",
                  macro_f1,
                  file=output)
            output.close()
            return

        if (self.config["model"] == 'bilstm_ens'
                or self.config["model"] == 'bow_bilstm_ens'):
            models = list()
            for ens in range(int(self.config["ensemble_size"])):
                models.append(
                    torch.load(self.config["path_model"] + '.' + str(ens)))
            x = torch.nn.utils.rnn.pad_sequence(sens_rep, padding_value=0)
            accs, y_pre = get_accuracy_ens_bilstm(models, x, y_real, lengths)
            conf_mat = get_confusion_matrix(y_real, y_pre, len(labels_index))
            micro_f1 = get_micro_f1(conf_mat)
            macro_f1, f1 = get_macro_f1(conf_mat)
            output = open(self.config["path_eval_result"], 'w')
            print("F1-score of each classes:\n", file=output)
            for i in range(len(labels_index)):
                print(list(labels_index.keys())[i], f1[i], file=output)
            print("{0:<15}\t{1:<15}\t{2}".format("Actual", "Prediction",
                                                 "Correct?"),
                  file=output)
            for i, j in zip(y_real, y_pre):
                real = list(labels_index.keys())[list(
                    labels_index.values()).index(i)]
                pre = list(labels_index.keys())[list(
                    labels_index.values()).index(j)]
                if i == j:
                    print("{0:<15}\t{1:<15}\t{2}".format(real, pre, "True"),
                          file=output)
                else:
                    print("{0:<15}\t{1:<15}\t{2}".format(real, pre, "False"),
                          file=output)
            print("The accuracy of {} models are: ".format(len(models)),
                  file=output)
            for i in range(len(accs) - 1):
                print(str(accs[i]) + " ", file=output)
            print("\nThe ensembled accuracy is: {}\n".format(accs[len(accs) -
                                                                  1]),
                  file=output)
            print("Confusion Matrix:\n",
                  conf_mat,
                  "\nMicro F1: ",
                  micro_f1,
                  "\nMacro F1: ",
                  macro_f1,
                  file=output)
            output.close()
            return

        model = torch.load(self.config["path_model"])

        if (self.config["model"] == 'bow'):
            x = sens_rep
            acc, y_pre = get_accuracy_test(model, "bow", x, y_real, False)
        if (self.config["model"] == 'bilstm'):
            x = torch.nn.utils.rnn.pad_sequence(sens_rep, padding_value=0)
            acc, y_pre = get_accuracy_test(model, "bilstm", x, y_real, lengths)
        if (self.config["model"] == 'bow_bilstm'):
            x = torch.nn.utils.rnn.pad_sequence(sens_rep, padding_value=0)
            acc, y_pre = get_accuracy_test(model, "bow_bilstm", x, y_real,
                                           lengths)

        conf_mat = get_confusion_matrix(y_real, y_pre, len(labels_index))
        micro_f1 = get_micro_f1(conf_mat)
        macro_f1, f1 = get_macro_f1(conf_mat)
        print("Accuracy: {}".format(acc))
        print("Confusion Matrix:\n", conf_mat)
        print("Micro F1: ", micro_f1)
        print("Macro F1: ", macro_f1)
        output = open(self.config["path_eval_result"], 'w')
        print("F1-score of each classes:\n", file=output)
        for i in range(len(labels_index)):
            print(list(labels_index.keys())[i], f1[i], file=output)
        print("{0:<15}\t{1:<15}\t{2}".format("Actual", "Prediction",
                                             "Correct?"),
              file=output)
        for i, j in zip(y_real, y_pre):
            real = list(labels_index.keys())[list(
                labels_index.values()).index(i)]
            pre = list(labels_index.keys())[list(
                labels_index.values()).index(j)]
            if i == j:
                print("{0:<15}\t{1:<15}\t{2}".format(real, pre, "True"),
                      file=output)
            else:
                print("{0:<15}\t{1:<15}\t{2}".format(real, pre, "False"),
                      file=output)
        print("The accuray after training is: ",
              acc,
              '\n',
              "Confusion Matrix:\n",
              conf_mat,
              '\n',
              "Micro F1: ",
              micro_f1,
              '\n',
              "Macro F1: ",
              macro_f1,
              file=output)
        output.close()