Beispiel #1
0
    def __init__(self):
        Genotype.__init__(self, orig_size_xyz=IND_SIZE)

        self.add_network(CPPN(output_node_names=["phase_offset"]))
        self.add_network(CPPN(output_node_names=["material_present"]))
        self.add_network(CPPN(output_node_names=["stiffness"]))
        self.add_network(CPPN(output_node_names=["stress_adaptation_rate"]))

        self.to_phenotype_mapping.add_map(name="phase_offset", tag="<PhaseOffset>")

        self.to_phenotype_mapping.add_map(name="material_present", tag="<Data>", func=one_muscle, output_type=int)

        self.to_phenotype_mapping.add_map(name="stiffness", tag="<Stiffness>",
                                          func=partial(rescaled_positive_sigmoid, x_min=MIN_ELASTIC_MOD,
                                                       x_max=MAX_ELASTIC_MOD),
                                          params=[MIN_ELASTIC_MOD, MAX_ELASTIC_MOD],
                                          param_tags=["MinElasticMod", "MaxElasticMod"])

        self.to_phenotype_mapping.add_map(name="stress_adaptation_rate", tag="<StressAdaptationRate>",
                                          func=partial(rescaled_positive_sigmoid, x_min=-MAX_ADAPTATION_RATE,
                                                       x_max=MAX_ADAPTATION_RATE),
                                          params=[MIN_ELASTIC_MOD, MAX_ELASTIC_MOD, MAX_STIFFNESS_CHANGE,
                                                  MAX_ADAPTATION_RATE, GROWTH_MODEL, MIN_DEVO],
                                          param_tags=["MinElasticMod", "MaxElasticMod", "MaxStiffnessChange",
                                                      "MaxAdaptationRate", "GrowthModel", "MinDevo"])
Beispiel #2
0
    def __init__(self):
        Genotype.__init__(self, orig_size_xyz=IND_SIZE)

        self.add_network(CPPN(output_node_names=["phase_offset"]))
        self.add_network(CPPN(output_node_names=["material_present"]))
        self.add_network(CPPN(output_node_names=["stiffness"]))
        self.add_network(CPPN(output_node_names=["adaptation_rate"])
                         )  # mapping to the phenotype is zeroed out

        self.to_phenotype_mapping.add_map(name="phase_offset",
                                          tag="<PhaseOffset>")

        self.to_phenotype_mapping.add_map(name="material_present",
                                          tag="<Data>",
                                          func=one_muscle,
                                          output_type=int)

        self.to_phenotype_mapping.add_map(
            name="stiffness",
            tag="<Stiffness>",
            func=partial(rescaled_positive_sigmoid,
                         x_min=MIN_ELASTIC_MOD,
                         x_max=MAX_ELASTIC_MOD),
            params=[MIN_ELASTIC_MOD, MAX_ELASTIC_MOD],
            param_tags=["MinElasticMod", "MaxElasticMod"])
Beispiel #3
0
    def __init__(self):
        # We instantiate a new genotype for each individual which must have the following properties
        Genotype.__init__(self, orig_size_xyz=IND_SIZE)

        # The genotype consists of a single Compositional Pattern Producing Network (CPPN),
        # with multiple inter-dependent outputs determining the material constituting each voxel
        # (e.g. two types of active voxels, actuated with a different phase, two types of passive voxels, softer and stiffer)
        # The material IDs that you will see in the phenotype mapping dependencies refer to a predefined palette of materials
        # currently hardcoded in tools/read_write_voxelyze.py:
        # (0: empty, 1: passiveSoft, 2: passiveHard, 3: active+, 4:active-),
        # but this can be changed.
        self.add_network(CPPN(output_node_names=["shape", "muscleOrTissue"]))

        self.to_phenotype_mapping.add_map(
            name="material",
            tag="<Data>",
            func=make_material_tree,
            dependency_order=["shape", "muscleOrTissue"],
            output_type=int)  # BUGFIX: "tissueType" was not listed

        self.to_phenotype_mapping.add_output_dependency(name="shape",
                                                        dependency_name=None,
                                                        requirement=None,
                                                        material_if_true=None,
                                                        material_if_false="0")

        self.to_phenotype_mapping.add_output_dependency(
            name="muscleOrTissue",
            dependency_name="shape",
            requirement=True,
            material_if_true=None,
            material_if_false="2")  # BUGFIX: was material_if_false=1
Beispiel #4
0
    def __init__(self):
        Genotype.__init__(self, orig_size_xyz=IND_SIZE)
        self.add_network(CPPN(output_node_names=["initial_size"]))
        self.to_phenotype_mapping.add_map(name="initial_size",
                                          tag="<InitialVoxelSize>",
                                          logging_stats=[
                                              np.median, np.mean, np.std,
                                              count_negative, count_positive
                                          ])

        self.add_network(CPPN(output_node_names=["final_size"]))
        self.to_phenotype_mapping.add_map(name="final_size",
                                          tag="<FinalVoxelSize>",
                                          logging_stats=[
                                              np.median, np.mean, np.std,
                                              count_negative, count_positive
                                          ])
Beispiel #5
0
    def __init__(self):
        Genotype.__init__(self, orig_size_xyz=IND_SIZE)
        self.add_network(CPPN(output_node_names=["initial_size"]))
        self.to_phenotype_mapping.add_map(name="initial_size", tag="<InitialVoxelSize>",
                                          logging_stats=[np.median, np.mean, np.std, count_negative, count_positive])

        self.add_network(CPPN(output_node_names=["final_size"]))
        self.to_phenotype_mapping.add_map(name="final_size", tag="<FinalVoxelSize>",
                                          logging_stats=[np.median, np.mean, np.std, count_negative, count_positive])

        # self.add_network(CPPN(output_node_names=["start_growth_time"]))
        # self.to_phenotype_mapping.add_map(name="start_growth_time", tag="<StartGrowthTime>", func=positive_sigmoid,
        #                                   logging_stats=[np.median, np.mean, mean_abs, np.std, std_abs])

        self.add_network(CPPN(output_node_names=["growth_time"]))
        self.to_phenotype_mapping.add_map(name="growth_time", tag="<GrowthTime>", func=positive_sigmoid,
                                          logging_stats=[np.median, np.mean, mean_abs, np.std, std_abs])
Beispiel #6
0
    def __init__(self):
        Genotype.__init__(self, orig_size_xyz=IND_SIZE)

        self.add_network(CPPN(output_node_names=["phase_offset"]))
        self.to_phenotype_mapping.add_map(name="phase_offset", tag="<PhaseOffset>", logging_stats=None)

        self.add_network(DirectEncoding(output_node_name="material_present", orig_size_xyz=IND_SIZE), freeze=True)
        self.to_phenotype_mapping.add_map(name="material_present", tag="<Data>", output_type=int, logging_stats=None)
Beispiel #7
0
    def __init__(self):

        # We instantiate a new genotype for each individual which must have the following properties
        Genotype.__init__(self, orig_size_xyz=IND_SIZE)

        # Let's add a first CPPN to the genotype. It dictates a continuous phenotypic trait,
        # the actuation phase of each voxel with respect to a global CPG-like sinusoidal signal
        self.add_network(CPPN(output_node_names=["phase_offset", "frequency"]))

        # Let's map this CPPN output to a VXA tag named <PhaseOffset>
        self.to_phenotype_mapping.add_map(name="phase_offset", tag="<PhaseOffset>", 
                                          func=partial(rescaled_positive_sigmoid, x_min=0, x_max=2*math.pi))

        self.to_phenotype_mapping.add_map(name="frequency", tag="<TempPeriod>", env_kws={"frequency": frequency_func})  # tag actually doesn't do anything here

        # Now adding a second CPPN, with three outputs. "shape" the geometry of the robot
        # (i.e. whether a particular voxel is empty or full),
        # if full, "muscleOrTissue" dictates whether a voxel is actuated or passive. The third output, "stiffness",
        # is another continuous attribute, the stiffness (elastic modulus) of each voxel
        # (overrides elastic mod defined in the materials palette)
        self.add_network(CPPN(output_node_names=["shape", "muscleOrTissue", "stiffness"]))

        # Once remapped from [-1,1] to [MIN_ELASTIC_MOD, MAX_ELASTIC_MOD] through "func",
        # the "stiffness" output goes directly to the <Stiffness> vxa tag as a continuous property.
        # We also pass min and max elastic mod as sub-tags of <Stiffness> (will be used by VoxCad)
        self.to_phenotype_mapping.add_map(name="stiffness", tag="<Stiffness>",
                                          func=partial(rescaled_positive_sigmoid, x_min=MIN_ELASTIC_MOD, x_max=MAX_ELASTIC_MOD),
                                          params=[MIN_ELASTIC_MOD, MAX_ELASTIC_MOD],
                                          param_tags=["MinElasticMod", "MaxElasticMod"])

        # The mapping for materials depends on both "shape" and "muscleOrTissue", through the following dependencies.
        # Basically, if "shape" is false (cppn output < 0), the material with id "0" is assigned (-> empty voxel).
        # If, instead, "shape" is true (cppn output > 0), we look at the "muscleOrTissue" output to determine
        # whether the material is actuated (id = 3) or passive (id = 1). These material IDs are refer to a
        # fixed palette of materials, currently hardcoded in tools/read_write_voxelyze.py
        self.to_phenotype_mapping.add_map(name="material", tag="<Data>", func=make_material_tree,
                                          dependency_order=["shape", "muscleOrTissue"], output_type=int)

        self.to_phenotype_mapping.add_output_dependency(name="shape", dependency_name=None, requirement=None,
                                                        material_if_true=None, material_if_false="0")

        self.to_phenotype_mapping.add_output_dependency(name="muscleOrTissue", dependency_name="shape",
                                                        requirement=True, material_if_true="3", material_if_false="1")
Beispiel #8
0
    def __init__(self):
        Genotype.__init__(self, orig_size_xyz=IND_SIZE)

        # quadrupedal structure
        self.add_network(DirectEncoding(output_node_name="material", orig_size_xyz=IND_SIZE), freeze=True)
        self.to_phenotype_mapping.add_map(name="material", tag="<Data>", output_type=int, logging_stats=None)

        # controller (phi; phase-offsets)
        self.add_network(CPPN(output_node_names=["phase_offset"]))
        self.to_phenotype_mapping.add_map(name="phase_offset", tag="<PhaseOffset>")
    def __init__(self):
        # We instantiate a new genotype for each individual which must have the following properties
        Genotype.__init__(self, orig_size_xyz=IND_SIZE)

        # The genotype consists of :
        # - a single Compositional Pattern Producing Network (CPPN), with multiple inter-dependent outputs determining
        #   the material constituting each voxel (e.g. two types of active voxels, actuated with a different phase, two
        #   types of passive voxels, softer and stiffer). The material IDs that you will see in the phenotype mapping
        #   dependencies refer to a predefined palette of materials currently hardcoded in tools/read_write_voxelyze.py:
        #   (0: empty, 1: passiveSoft, 2: passiveHard, 3: active+, 4:active-), but this can be changed.
        self.add_network(
            CPPN(output_node_names=[
                "shape", "newOrOld", "newMuscleOrTissue", "oldMuscleOrTissue",
                "newMuscleType", "newTissueType", "muscleType", "tissueType"
            ]))

        self.to_phenotype_mapping.add_map(name="material",
                                          tag="<Data>",
                                          func=make_material_tree,
                                          dependency_order=[
                                              "shape", "newOrOld",
                                              "newMuscleOrTissue",
                                              "oldMuscleOrTissue",
                                              "newMuscleType", "newTissueType",
                                              "muscleType", "tissueType"
                                          ],
                                          output_type=int)

        self.to_phenotype_mapping.add_output_dependency(name="shape",
                                                        dependency_name=None,
                                                        requirement=None,
                                                        material_if_true=None,
                                                        material_if_false="0")

        self.to_phenotype_mapping.add_output_dependency(
            name="newOrOld",
            dependency_name="shape",
            requirement=True,
            material_if_true=None,
            material_if_false=None)

        self.to_phenotype_mapping.add_output_dependency(
            name="newMuscleOrTissue",
            dependency_name="newOrOld",
            requirement=True,
            material_if_true=None,
            material_if_false=None)

        self.to_phenotype_mapping.add_output_dependency(
            name="oldMuscleOrTissue",
            dependency_name="newOrOld",
            requirement=False,
            material_if_true=None,
            material_if_false=None)

        self.to_phenotype_mapping.add_output_dependency(
            name="newMuscleType",
            dependency_name="newMuscleOrTissue",
            requirement=True,
            material_if_true="8",
            material_if_false="9")

        self.to_phenotype_mapping.add_output_dependency(
            name="newTissueType",
            dependency_name="newMuscleOrTissue",
            requirement=False,
            material_if_true="6",
            material_if_false="7")

        self.to_phenotype_mapping.add_output_dependency(
            name="muscleType",
            dependency_name="oldMuscleOrTissue",
            requirement=True,
            material_if_true="3",
            material_if_false="4")

        self.to_phenotype_mapping.add_output_dependency(
            name="tissueType",
            dependency_name="oldMuscleOrTissue",
            requirement=False,
            material_if_true="1",
            material_if_false="2")

        self.materials = dict()
        self.materials["6"] = NewMaterial(name="New_Passive_Soft",
                                          rgb=(0.6, 0.3, 0),
                                          type="tissue",
                                          young_modulus=5000000.0,
                                          density=1e+006,
                                          cte=0)
        self.materials["7"] = NewMaterial(name="New_Passive_Hard",
                                          rgb=(0.3, 0, 0),
                                          type="tissue",
                                          young_modulus=500000000.0,
                                          density=1e+006,
                                          cte=0)
        self.materials["8"] = NewMaterial(name="New_Active_+",
                                          rgb=(1, 1, 0),
                                          type="muscle",
                                          young_modulus=5000000.0,
                                          density=1e+006,
                                          cte=0.05)
        self.materials["9"] = NewMaterial(name="New_Active_-",
                                          rgb=(1, 0.5, 0),
                                          type="muscle",
                                          young_modulus=5000000.0,
                                          density=1e+006,
                                          cte=-0.05)
        self.materials = collections.OrderedDict(sorted(
            self.materials.items()))