Beispiel #1
0
def main(time_step=0.01):
    parser = create_parser()
    parser.add_argument('-teleport',
                        action='store_true',
                        help='Teleports between configurations')
    parser.add_argument('-viewer',
                        action='store_true',
                        help='enable the viewer while planning')
    # TODO: argument for selecting prior
    args = parser.parse_args()
    print('Arguments:', args)

    # TODO: nonuniform distribution to bias towards other actions
    # TODO: closed world and open world
    real_world = connect(use_gui=not args.viewer)
    add_data_path()
    task, state = get_problem1(localized='rooms',
                               p_other=0.25)  # surfaces | rooms
    for body in task.get_bodies():
        add_body_name(body)

    robot = task.robot
    #dump_body(robot)
    assert (USE_DRAKE_PR2 == is_drake_pr2(robot))
    attach_viewcone(robot)  # Doesn't work for the normal pr2?
    draw_base_limits(get_base_limits(robot), color=(0, 1, 0))
    #wait_for_user()
    # TODO: partially observable values
    # TODO: base movements preventing pick without look

    # TODO: do everything in local coordinate frame
    # TODO: automatically determine an action/command cannot be applied
    # TODO: convert numpy arrays into what they are close to
    # TODO: compute whether a plan will still achieve a goal and do that
    # TODO: update the initial state directly and then just redraw it to ensure uniqueness
    step = 0
    while True:
        step += 1
        print('\n' + 50 * '-')
        print(step, state)
        wait_for_user()
        #print({b: p.value for b, p in state.poses.items()})
        with ClientSaver():
            commands = plan_commands(state, args)
        print()
        if commands is None:
            print('Failure!')
            break
        if not commands:
            print('Success!')
            break
        apply_commands(state, commands, time_step=time_step)

    print(state)
    wait_for_user()
    disconnect()
Beispiel #2
0
def packed(arm='left', grasp_type='top', num=5):
    # TODO: packing problem where you have to place in one direction
    base_extent = 5.0

    base_limits = (-base_extent / 2. * np.ones(2),
                   base_extent / 2. * np.ones(2))
    block_width = 0.07
    block_height = 0.1
    #block_height = 2*block_width
    block_area = block_width * block_width

    #plate_width = 2*math.sqrt(num*block_area)
    plate_width = 0.27
    #plate_width = 0.28
    #plate_width = 0.3
    print('Width:', plate_width)
    plate_width = min(plate_width, 0.6)
    plate_height = 0.001

    other_arm = get_other_arm(arm)
    initial_conf = get_carry_conf(arm, grasp_type)

    add_data_path()
    floor = load_pybullet("plane.urdf")
    pr2 = create_pr2()
    set_arm_conf(pr2, arm, initial_conf)
    open_arm(pr2, arm)
    set_arm_conf(pr2, other_arm, arm_conf(other_arm, REST_LEFT_ARM))
    close_arm(pr2, other_arm)
    set_group_conf(pr2, 'base',
                   [-1.0, 0, 0])  # Be careful to not set the pr2's pose

    table = create_table()
    plate = create_box(plate_width, plate_width, plate_height, color=GREEN)
    plate_z = stable_z(plate, table)
    set_point(plate, Point(z=plate_z))
    surfaces = [table, plate]

    blocks = [
        create_box(block_width, block_width, block_height, color=BLUE)
        for _ in range(num)
    ]
    initial_surfaces = {block: table for block in blocks}

    min_distances = {block: 0.05 for block in blocks}
    sample_placements(initial_surfaces, min_distances=min_distances)

    return Problem(
        robot=pr2,
        movable=blocks,
        arms=[arm],
        grasp_types=[grasp_type],
        surfaces=surfaces,
        #goal_holding=[(arm, block) for block in blocks])
        goal_on=[(block, plate) for block in blocks],
        base_limits=base_limits)
Beispiel #3
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('-viewer', action='store_true', help='enable the viewer while planning')
    args = parser.parse_args()
    print(args)

    connect(use_gui=True)
    with LockRenderer():
        draw_pose(unit_pose(), length=1)
        floor = create_floor()
        with HideOutput():
            robot = load_pybullet(get_model_path(ROOMBA_URDF), fixed_base=True, scale=2.0)
            for link in get_all_links(robot):
                set_color(robot, link=link, color=ORANGE)
            robot_z = stable_z(robot, floor)
            set_point(robot, Point(z=robot_z))
        #set_base_conf(robot, rover_confs[i])

        data_path = add_data_path()
        shelf, = load_model(os.path.join(data_path, KIVA_SHELF_SDF), fixed_base=True) # TODO: returns a tuple
        dump_body(shelf)
        #draw_aabb(get_aabb(shelf))

    wait_for_user()
    disconnect()
Beispiel #4
0
def main(time_step=0.01):
    # TODO: closed world and open world
    real_world = connect(use_gui=True)
    add_data_path()
    task, state = get_problem1(localized='rooms',
                               p_other=0.5)  # surfaces | rooms
    for body in task.get_bodies():
        add_body_name(body)

    robot = task.robot
    #dump_body(robot)
    assert (USE_DRAKE_PR2 == is_drake_pr2(robot))
    attach_viewcone(robot)  # Doesn't work for the normal pr2?
    draw_base_limits(get_base_limits(robot), color=(0, 1, 0))
    #wait_for_interrupt()
    # TODO: partially observable values
    # TODO: base movements preventing pick without look

    # TODO: do everything in local coordinate frame
    # TODO: automatically determine an action/command cannot be applied
    # TODO: convert numpy arrays into what they are close to
    # TODO: compute whether a plan will still achieve a goal and do that
    # TODO: update the initial state directly and then just redraw it to ensure uniqueness
    step = 0
    while True:
        step += 1
        print('\n' + 50 * '-')
        print(step, state)
        #print({b: p.value for b, p in state.poses.items()})
        with ClientSaver():
            commands = plan_commands(state)
        print()
        if commands is None:
            print('Failure!')
            break
        if not commands:
            print('Success!')
            break
        apply_commands(state, commands, time_step=time_step)

    print(state)
    wait_for_interrupt()
    disconnect()
Beispiel #5
0
def problem1(n_rovers=1, n_objectives=1, n_rocks=2, n_soil=2, n_stores=1):
    base_extent = 5.0
    base_limits = (-base_extent / 2. * np.ones(2),
                   base_extent / 2. * np.ones(2))

    floor = create_box(base_extent, base_extent, 0.001,
                       color=TAN)  # TODO: two rooms
    set_point(floor, Point(z=-0.001 / 2.))

    add_data_path()
    lander = load_pybullet(HUSKY_URDF, scale=1)
    lander_z = stable_z(lander, floor)
    set_point(lander, Point(-2, -2, lander_z))
    #wait_for_user()

    mount_width = 0.5
    mound_height = mount_width
    mound1 = create_box(mount_width, mount_width, mound_height, color=GREY)
    set_point(mound1, [+2, 1.5, mound_height / 2.])
    mound2 = create_box(mount_width, mount_width, mound_height, color=GREY)
    set_point(mound2, [-2, 1.5, mound_height / 2.])

    initial_surfaces = {}

    rover_confs = [(+1, -1.75, np.pi), (-1, -1.75, 0)]
    assert n_rovers <= len(rover_confs)

    #body_names = map(get_name, env.GetBodies())
    landers = [lander]
    stores = ['store{}'.format(i) for i in range(n_stores)]

    #affine_limits = aabb_extrema(aabb_union([aabb_from_body(body) for body in env.GetBodies()])).T
    rovers = []
    for i in range(n_rovers):
        robot = create_pr2()
        dump_body(robot)  # camera_rgb_optical_frame
        rovers.append(robot)
        set_group_conf(robot, 'base', rover_confs[i])
        for arm in ARM_NAMES:
            set_arm_conf(robot, arm, arm_conf(arm, REST_LEFT_ARM))
            close_arm(robot, arm)

    obj_width = 0.07
    obj_height = 0.2

    objectives = []
    for _ in range(n_objectives):
        body = create_box(obj_width, obj_width, obj_height, color=BLUE)
        objectives.append(body)
        initial_surfaces[body] = mound1
    for _ in range(n_objectives):
        body = create_box(obj_width, obj_width, obj_height, color=RED)
        initial_surfaces[body] = mound2

    # TODO: it is moving to intermediate locations attempting to reach the rocks
    rocks = []
    for _ in range(n_rocks):
        body = create_box(0.075, 0.075, 0.05, color=BLACK)
        rocks.append(body)
        initial_surfaces[body] = floor
    soils = []
    for _ in range(n_soil):
        body = create_box(0.1, 0.1, 0.025, color=BROWN)
        soils.append(body)
        initial_surfaces[body] = floor
    sample_placements(initial_surfaces)

    #for name in rocks + soils:
    #    env.GetKinBody(name).Enable(False)
    return RoversProblem(rovers, landers, objectives, rocks, soils, stores,
                         base_limits)
Beispiel #6
0
def rovers1(n_rovers=2,
            n_objectives=4,
            n_rocks=3,
            n_soil=3,
            n_stores=1,
            n_obstacles=8):
    base_extent = 5.0
    base_limits = (-base_extent / 2. * np.ones(2),
                   base_extent / 2. * np.ones(2))
    mount_width = 0.5
    mound_height = 0.1

    floor = create_box(base_extent, base_extent, 0.001,
                       color=TAN)  # TODO: two rooms
    set_point(floor, Point(z=-0.001 / 2.))

    wall1 = create_box(base_extent + mound_height,
                       mound_height,
                       mound_height,
                       color=GREY)
    set_point(wall1, Point(y=base_extent / 2., z=mound_height / 2.))
    wall2 = create_box(base_extent + mound_height,
                       mound_height,
                       mound_height,
                       color=GREY)
    set_point(wall2, Point(y=-base_extent / 2., z=mound_height / 2.))
    wall3 = create_box(mound_height,
                       base_extent + mound_height,
                       mound_height,
                       color=GREY)
    set_point(wall3, Point(x=base_extent / 2., z=mound_height / 2.))
    wall4 = create_box(mound_height,
                       base_extent + mound_height,
                       mound_height,
                       color=GREY)
    set_point(wall4, Point(x=-base_extent / 2., z=mound_height / 2.))
    # TODO: can add obstacles along the wall

    wall = create_box(mound_height, base_extent, mound_height,
                      color=GREY)  # TODO: two rooms
    set_point(wall, Point(z=mound_height / 2.))

    add_data_path()
    with HideOutput():
        lander = load_pybullet(HUSKY_URDF, scale=1)
    lander_z = stable_z(lander, floor)
    set_point(lander, Point(-1.9, -2, lander_z))

    mound1 = create_box(mount_width, mount_width, mound_height, color=GREY)
    set_point(mound1, [+2, 2, mound_height / 2.])
    mound2 = create_box(mount_width, mount_width, mound_height, color=GREY)
    set_point(mound2, [-2, 2, mound_height / 2.])
    mound3 = create_box(mount_width, mount_width, mound_height, color=GREY)
    set_point(mound3, [+0.5, 2, mound_height / 2.])
    mound4 = create_box(mount_width, mount_width, mound_height, color=GREY)
    set_point(mound4, [-0.5, 2, mound_height / 2.])
    mounds = [mound1, mound2, mound3, mound4]
    random.shuffle(mounds)

    body_types = []
    initial_surfaces = OrderedDict()
    min_distances = {}
    for _ in range(n_obstacles):
        body = create_box(mound_height,
                          mound_height,
                          4 * mound_height,
                          color=GREY)
        initial_surfaces[body] = floor

    rover_confs = [(+1, -1.75, np.pi), (-1, -1.75, 0)]
    assert n_rovers <= len(rover_confs)

    landers = [lander]
    stores = ['store{}'.format(i) for i in range(n_stores)]

    rovers = []
    for i in range(n_rovers):
        # camera_rgb_optical_frame
        with HideOutput():
            rover = load_model(TURTLEBOT_URDF)
        robot_z = stable_z(rover, floor)
        set_point(rover, Point(z=robot_z))
        #handles = draw_aabb(get_aabb(rover)) # Includes the origin
        #print(get_center_extent(rover))
        #wait_for_user()
        set_base_conf(rover, rover_confs[i])
        rovers.append(rover)
        #dump_body(rover)
        #draw_pose(get_link_pose(rover, link_from_name(rover, KINECT_FRAME)))

    obj_width = 0.07
    obj_height = 0.2

    objectives = []
    for i in range(n_objectives):
        body = create_box(obj_width, obj_width, obj_height, color=BLUE)
        objectives.append(body)
        #initial_surfaces[body] = random.choice(mounds)
        initial_surfaces[body] = mounds[i]
    min_distances.update({r: 0.05 for r in objectives})

    # TODO: it is moving to intermediate locations attempting to reach the rocks

    rocks = []
    for _ in range(n_rocks):
        body = create_box(0.075, 0.075, 0.01, color=BLACK)
        rocks.append(body)
        body_types.append((body, 'stone'))
    for _ in range(n_soil):
        body = create_box(0.1, 0.1, 0.005, color=BROWN)
        rocks.append(body)
        body_types.append((body, 'soil'))
    soils = []  # Treating soil as rocks for simplicity

    initial_surfaces.update({r: floor for r in rocks})
    min_distances.update({r: 0.2 for r in rocks})
    sample_placements(initial_surfaces, min_distances=min_distances)

    return RoversProblem(rovers, landers, objectives, rocks, soils, stores,
                         base_limits, body_types)
Beispiel #7
0
def blocked(arm='left', grasp_type='side', num=1):
    x_extent = 10.0

    base_limits = (-x_extent / 2. * np.ones(2), x_extent / 2. * np.ones(2))
    block_width = 0.07
    #block_height = 0.1
    block_height = 2 * block_width
    #block_height = 0.2
    plate_height = 0.001
    table_x = (x_extent - 1) / 2.

    other_arm = get_other_arm(arm)
    initial_conf = get_carry_conf(arm, grasp_type)

    add_data_path()
    floor = load_pybullet("plane.urdf")
    pr2 = create_pr2()
    set_arm_conf(pr2, arm, initial_conf)
    open_arm(pr2, arm)
    set_arm_conf(pr2, other_arm, arm_conf(other_arm, REST_LEFT_ARM))
    close_arm(pr2, other_arm)
    set_group_conf(
        pr2, 'base',
        [x_extent / 4, 0, 0])  # Be careful to not set the pr2's pose

    table1 = create_table()
    set_point(table1, Point(x=+table_x, y=0))
    table2 = create_table()
    set_point(table2, Point(x=-table_x, y=0))
    #table3 = create_table()
    #set_point(table3, Point(x=0, y=0))

    plate = create_box(0.6, 0.6, plate_height, color=GREEN)
    x, y, _ = get_point(table1)
    plate_z = stable_z(plate, table1)
    set_point(plate, Point(x=x, y=y - 0.3, z=plate_z))
    #surfaces = [table1, table2, table3, plate]
    surfaces = [table1, table2, plate]

    green1 = create_box(block_width, block_width, block_height, color=BLUE)
    green1_z = stable_z(green1, table1)
    set_point(green1, Point(x=x, y=y + 0.3, z=green1_z))
    # TODO: can consider a fixed wall here instead

    spacing = 0.15

    #red_directions = [(-1, 0), (+1, 0), (0, -1), (0, +1)]
    red_directions = [(-1, 0)]
    #red_directions = []
    red_bodies = []
    for red_direction in red_directions:
        red = create_box(block_width, block_width, block_height, color=RED)
        red_bodies.append(red)
        x, y = get_point(green1)[:2] + spacing * np.array(red_direction)
        z = stable_z(red, table1)
        set_point(red, Point(x=x, y=y, z=z))

    wall1 = create_box(0.01, 2 * spacing, block_height, color=GREY)
    wall2 = create_box(spacing, 0.01, block_height, color=GREY)
    wall3 = create_box(spacing, 0.01, block_height, color=GREY)
    z = stable_z(wall1, table1)
    x, y = get_point(green1)[:2]
    set_point(wall1, Point(x=x + spacing, y=y, z=z))
    set_point(wall2, Point(x=x + spacing / 2, y=y + spacing, z=z))
    set_point(wall3, Point(x=x + spacing / 2, y=y - spacing, z=z))

    green_bodies = [
        create_box(block_width, block_width, block_height, color=BLUE)
        for _ in range(num)
    ]
    body_types = [(b, 'green')
                  for b in [green1] + green_bodies]  #  + [(table1, 'sink')]

    movable = [green1] + green_bodies + red_bodies
    initial_surfaces = {block: table2 for block in green_bodies}
    sample_placements(initial_surfaces)

    return Problem(
        robot=pr2,
        movable=movable,
        arms=[arm],
        grasp_types=[grasp_type],
        surfaces=surfaces,
        #sinks=[table1],
        #goal_holding=[(arm, '?green')],
        #goal_cleaned=['?green'],
        goal_on=[('?green', plate)],
        body_types=body_types,
        base_limits=base_limits,
        costs=True)