Beispiel #1
0
def main():
    args = parser.parse_args()
    sample = dict()
    net_input = dict()

    feature = get_feature(args.wav_path)
    target_dict = Dictionary.load(args.target_dict_path)

    model = load_model(args.w2v_path, target_dict)
    model[0].eval()

    generator = W2lViterbiDecoder(target_dict)
    net_input["source"] = feature.unsqueeze(0)

    padding_mask = torch.BoolTensor(
        net_input["source"].size(1)).fill_(False).unsqueeze(0)

    net_input["padding_mask"] = padding_mask
    sample["net_input"] = net_input

    with torch.no_grad():
        hypo = generator.generate(model, sample, prefix_tokens=None)

    hyp_pieces = target_dict.string(hypo[0][0]["tokens"].int().cpu())
    print(post_process(hyp_pieces, 'letter'))
Beispiel #2
0
    def predict_file(self, file_path):
        generator = W2lViterbiDecoder(self.target_dict)
        sample = dict()
        net_input = dict()
        feature = get_feature(file_path)
        net_input["source"] = feature.unsqueeze(0).to(device)

        padding_mask = torch.BoolTensor(
            net_input["source"].size(1)).fill_(False).unsqueeze(0).to(device)

        net_input["padding_mask"] = padding_mask
        sample["net_input"] = net_input

        with torch.no_grad():
            hypo = generator.generate(self.model, sample, prefix_tokens=None)
            # print(hypo[0][0]["tokens"].size())

        hyp_pieces = self.target_dict.string(hypo[0][0]["tokens"].int().cpu(),
                                             bpe_symbol='none')
        asr_result = post_process(hyp_pieces, 'none')
        # print(asr_result)

        audio_embedding = self.model(**net_input)
        audio_embedding = audio_embedding['encoder_out_no_proj'].squeeze(
            1).cpu().numpy()
        # audio_embedding = audio_embedding['encoder_out'].squeeze(1).detach().cpu().numpy()
        # print(np.shape(audio_embedding))
        return asr_result, audio_embedding
Beispiel #3
0
    def build_generator(cfg: UnsupGenerateConfig):
        w2l_decoder = cfg.w2l_decoder
        if w2l_decoder == DecoderType.VITERBI:
            from examples.speech_recognition.w2l_decoder import W2lViterbiDecoder

            return W2lViterbiDecoder(cfg, task.target_dictionary)
        elif w2l_decoder == DecoderType.KENLM:
            from examples.speech_recognition.w2l_decoder import W2lKenLMDecoder

            return W2lKenLMDecoder(cfg, task.target_dictionary)
        elif w2l_decoder == DecoderType.FAIRSEQ:
            from examples.speech_recognition.w2l_decoder import W2lFairseqLMDecoder

            return W2lFairseqLMDecoder(cfg, task.target_dictionary)
        elif w2l_decoder == DecoderType.KALDI:
            from examples.speech_recognition.kaldi.kaldi_decoder import KaldiDecoder

            assert cfg.kaldi_decoder_config is not None

            return KaldiDecoder(
                cfg.kaldi_decoder_config,
                cfg.beam,
            )
        else:
            raise NotImplementedError(
                "only wav2letter decoders with (viterbi, kenlm, fairseqlm) options are supported at the moment but found "
                + str(w2l_decoder)
            )
Beispiel #4
0
    def build_generator(
        self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None
    ):
        if self.args.decoder_type == "ctc":
            from examples.speech_recognition.w2l_decoder import W2lViterbiDecoder

            return W2lViterbiDecoder(args, self.tgt_dict)
        else:
            raise NotImplementedError("only ctc decoder is supported at the moment")
Beispiel #5
0
 def build_generator(self, task, models, cfg):
     try:
         from examples.speech_recognition.w2l_decoder import W2lViterbiDecoder
     except Exception:
         raise Exception(
             "Cannot run this test without flashlight dependency")
     with open_dict(cfg):
         cfg.nbest = 1
     return W2lViterbiDecoder(cfg, task.target_dictionary)
Beispiel #6
0
    def build_generator(self, args):
        w2l_decoder = getattr(args, "w2l_decoder", None)
        if w2l_decoder == "viterbi":
            from examples.speech_recognition.w2l_decoder import W2lViterbiDecoder

            return W2lViterbiDecoder(args, self.target_dictionary)
        elif w2l_decoder == "kenlm":
            from examples.speech_recognition.w2l_decoder import W2lKenLMDecoder

            return W2lKenLMDecoder(args, self.target_dictionary)
        else:
            return super().build_generator(args)
Beispiel #7
0
 def _init_model(self, dict_file):
     parser = self._create_parser(dict_file)
     model_dir = os.path.dirname(self.model_path)
     target_dict_path = os.path.join(model_dir, dict_file)
     args = parser.parse_args([
         '--target_dict_path', target_dict_path, '--w2v_path',
         self.model_path
     ])
     target_dict = Dictionary.load(args.target_dict_path)
     self.model = self._load_model(args.w2v_path, target_dict)[0]
     self.model.eval()
     self.generator = W2lViterbiDecoder(args, target_dict)
     self.args = args
     self.target_dict = target_dict
Beispiel #8
0
def get_decoder(decoder_args_dict, dictionary):
    decoder_args = Namespace(**decoder_args_dict)

    if decoder_args.decoder_type == "viterbi":
        from examples.speech_recognition.w2l_decoder import W2lViterbiDecoder
        return W2lViterbiDecoder(decoder_args, dictionary)

    elif decoder_args.decoder_type == "kenlm":
        from examples.speech_recognition.w2l_decoder import W2lKenLMDecoder
        decoder_args.beam_size_token = len(dictionary)
        if isinstance(decoder_args.unk_weight, str):
            decoder_args.unk_weight = eval(decoder_args.unk_weight)
        return W2lKenLMDecoder(decoder_args, dictionary)

    return None
Beispiel #9
0
    def build_generator(args):
        w2l_decoder = getattr(args, "w2l_decoder", None)
        if w2l_decoder == "viterbi":
            from examples.speech_recognition.w2l_decoder import W2lViterbiDecoder

            return W2lViterbiDecoder(args, task.target_dictionary)
        elif w2l_decoder == "kenlm":
            from examples.speech_recognition.w2l_decoder import W2lKenLMDecoder
            print(task.target_dictionary.symbols)
            return W2lKenLMDecoder(args, task.target_dictionary)
        elif w2l_decoder == "fairseqlm":
            from examples.speech_recognition.w2l_decoder import W2lFairseqLMDecoder
            print(task.target_dictionary.symbols)
            return W2lFairseqLMDecoder(args, task.target_dictionary)
        else:
            return super().build_generator(args)
Beispiel #10
0
    def build_generator(args):
        w2l_decoder = getattr(args, "w2l_decoder", None)
        if w2l_decoder == "viterbi":
            from examples.speech_recognition.w2l_decoder import W2lViterbiDecoder

            return W2lViterbiDecoder(args, task.target_dictionary)
        elif w2l_decoder == "kenlm":
            from examples.speech_recognition.w2l_decoder import W2lKenLMDecoder

            return W2lKenLMDecoder(args, task.target_dictionary)
        elif w2l_decoder == "fairseqlm":
            from examples.speech_recognition.w2l_decoder import W2lFairseqLMDecoder

            return W2lFairseqLMDecoder(args, task.target_dictionary)
        else:
            print('only wav2letter decoders with (viterbi, kenlm, fairseqlm) options are supported at the moment')
Beispiel #11
0
def main():
    parser = argparse.ArgumentParser(description='Wav2vec-2.0 Recognize')
    parser.add_argument('--wav_path',
                        type=str,
                        default='~/xxx.wav',
                        help='path of wave file')
    parser.add_argument('--w2v_path',
                        type=str,
                        default='pre_train_weights/wav2vec_vox_960h_pl.pt',
                        help='path of pre-trained wav2vec-2.0 model')
    parser.add_argument('--target_dict_path',
                        type=str,
                        default='pre_train_weights/dict.ltr.txt',
                        help='path of target dict (dict.ltr.txt)')
    args = parser.parse_args()
    sample = dict()
    net_input = dict()

    feature = get_feature(args.wav_path)
    target_dict = Dictionary.load(args.target_dict_path)

    model = load_model(args.w2v_path, target_dict)
    model.eval()

    generator = W2lViterbiDecoder(target_dict)
    net_input["source"] = feature.unsqueeze(0).to(device)

    padding_mask = torch.BoolTensor(
        net_input["source"].size(1)).fill_(False).unsqueeze(0).to(device)

    net_input["padding_mask"] = padding_mask
    sample["net_input"] = net_input

    with torch.no_grad():
        hypo = generator.generate(model, sample, prefix_tokens=None)
        print(hypo[0][0]["tokens"].size())

    hyp_pieces = target_dict.string(hypo[0][0]["tokens"].int().cpu(),
                                    bpe_symbol='none')
    print(len(hyp_pieces.split()))
    print(post_process(hyp_pieces, 'letter_b'))
Beispiel #12
0
    def build_generator(args):
        w2l_decoder = getattr(args, "w2l_decoder", None)
        if w2l_decoder == "viterbi":
            from examples.speech_recognition.w2l_decoder import W2lViterbiDecoder

            return W2lViterbiDecoder(args, task.target_dictionary)
        elif w2l_decoder == "kenlm":
            from examples.speech_recognition.w2l_decoder import W2lKenLMDecoder

            return W2lKenLMDecoder(args, task.target_dictionary)
        elif w2l_decoder == "fairseqlm":
            from examples.speech_recognition.w2l_decoder import W2lFairseqLMDecoder

            return W2lFairseqLMDecoder(args, task.target_dictionary)
        elif w2l_decoder == "ctc_decoder":
            from examples.speech_recognition.ctc_decoder import CTCDecoder

            return CTCDecoder(args, task.target_dictionary)
        elif w2l_decoder == "cif_decoder":
            from examples.speech_recognition.cif_decoder import CIFDecoder

            return CIFDecoder(args, task.target_dictionary, {})
        elif w2l_decoder == "cif_lm_decoder":
            from examples.speech_recognition.cif_decoder import CIFDecoder

            return CIFDecoder(args, task.target_dictionary, ({}, {}))
        elif w2l_decoder == "cif_bert_decoder":
            from examples.speech_recognition.cif_bert_decoder import CIF_BERT_Decoder

            return CIF_BERT_Decoder(args, task.target_dictionary)
        elif w2l_decoder == "seq2seq_decoder":
            from examples.speech_recognition.seq2seq_decoder import Seq2seqDecoder

            return Seq2seqDecoder(args, task.target_dictionary, {})
        elif w2l_decoder == "seq2seq_lm_decoder":
            from examples.speech_recognition.seq2seq_decoder import Seq2seqDecoder

            return Seq2seqDecoder(args, task.target_dictionary, ({}, {}))
        else:
            return super().build_generator(args)
Beispiel #13
0
 def __init__(self, model_weight, target_dict):
     self.target_dict = Dictionary.load(target_dict)
     self.model = load_model(model_weight, self.target_dict)
     self.model.eval()
     self.generator = W2lViterbiDecoder(self.target_dict)
Beispiel #14
0
def _main(cfg: DictConfig, output_file):
    logging.basicConfig(
        format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
        datefmt="%Y-%m-%d %H:%M:%S",
        level=os.environ.get("LOGLEVEL", "INFO").upper(),
        stream=output_file,
    )
    
    if 'label_dir' in cfg.task:
        manifest_dir, _ = os.path.split(cfg.dataset.gen_subset)
        with read_write(cfg):
            cfg.task.label_dir = os.path.join(cfg.task.data, manifest_dir)
        print('cfg.task.data', cfg.task.label_dir)
    logger = logging.getLogger("fairseq_cli.generate")

    utils.import_user_module(cfg.common)

    if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None:
        cfg.dataset.max_tokens = 12000
    logger.info(cfg)

    # Fix seed for stochastic decoding
    if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
        np.random.seed(cfg.common.seed)
        utils.set_torch_seed(cfg.common.seed)

    use_cuda = torch.cuda.is_available() and not cfg.common.cpu

    # Load dataset splits
    task = tasks.setup_task(cfg.task)


    # Set dictionaries
    try:
        src_dict = getattr(task, "source_dictionary", None)
    except NotImplementedError:
        src_dict = None
    tgt_dict = task.target_dictionary

    overrides = ast.literal_eval(cfg.common_eval.model_overrides)

    # Load ensemble
    logger.info("loading model(s) from {}".format(cfg.common_eval.path))
    models, saved_cfg = checkpoint_utils.load_model_ensemble(
        utils.split_paths(cfg.common_eval.path),
        arg_overrides=overrides,
        task=task,
        suffix=cfg.checkpoint.checkpoint_suffix,
        strict=(cfg.checkpoint.checkpoint_shard_count == 1),
        num_shards=cfg.checkpoint.checkpoint_shard_count,
    )

    token_type = None
    if type(models[0]) == Wav2Bart or type(models[0]) == WavTransBart or type(models[0]) == WavLinearBart or type(models[0]) == WavBart2Bart:
        token_type = 'bart'
    elif type(models[0]) == Wav2BartChr:
        token_type = 'chr'
    elif type(models[0]) == Wav2VecCtc or type(models[0]) == Wav2BertChr or type(models[0]) == Wav2BertMixChr:
        token_type = 'chrctc'
    elif type(models[0]) == Wav2Bert:
        token_type = 'bert'
    else:
        raise ValueError(f'token_type not defined for {type(models[0])}')
    print(f'token_type is {token_type}')


    # loading the dataset should happen after the checkpoint has been loaded so we can give it the saved task config
    task.load_dataset(cfg.dataset.gen_subset, task_cfg=saved_cfg.task)

    if cfg.generation.lm_path is not None:
        overrides["data"] = cfg.task.data

        try:
            lms, _ = checkpoint_utils.load_model_ensemble(
                [cfg.generation.lm_path], arg_overrides=overrides, task=None
            )
        except:
            logger.warning(
                f"Failed to load language model! Please make sure that the language model dict is the same "
                f"as target dict and is located in the data dir ({cfg.task.data})"
            )
            raise

        assert len(lms) == 1
    else:
        lms = [None]

    # Optimize ensemble for generation
    for model in chain(models, lms):
        if model is None:
            continue
        if cfg.common.fp16:
            model.half()
        if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
            model.cuda()
        model.prepare_for_inference_(cfg)

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(cfg.generation.replace_unk)

    itr = task.get_batch_iterator(
        dataset=task.dataset(cfg.dataset.gen_subset),
        max_tokens=cfg.dataset.max_tokens,
        max_sentences=cfg.dataset.batch_size,
        max_positions=utils.resolve_max_positions(
            task.max_positions(), *[m.max_positions() for m in models]
        ),
        ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=cfg.dataset.required_batch_size_multiple,
        seed=cfg.common.seed,
        num_shards=cfg.distributed_training.distributed_world_size,
        shard_id=cfg.distributed_training.distributed_rank,
        num_workers=cfg.dataset.num_workers,
        data_buffer_size=cfg.dataset.data_buffer_size,
    ).next_epoch_itr(shuffle=False)
    progress = progress_bar.progress_bar(
        itr,
        log_format=cfg.common.log_format,
        log_interval=cfg.common.log_interval,
        default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
    )

    # Initialize generator
    gen_timer = StopwatchMeter()

    extra_gen_cls_kwargs = {"lm_model": lms[0], "lm_weight": cfg.generation.lm_weight}
    print('cfg.generation', cfg.generation)

    
    # print(cfg.task._name == 'audio_pretraining')
    if cfg.task._name != 'audio_pretraining' and cfg.task._name != 'audio_pretraining_bertbpe':
        generator = task.build_generator(
            models, cfg.generation, extra_gen_cls_kwargs=extra_gen_cls_kwargs
        )
    else:
        print('use W2lViterbiDecoder')
        from examples.speech_recognition.w2l_decoder import W2lViterbiDecoder
        from easydict import EasyDict as edict
        args = edict({
            'criterion': 'ctc',
            'nbest': 1,
        })  
        generator = W2lViterbiDecoder(args, task.target_dictionary)
    # Handle tokenization and BPE
    tokenizer = task.build_tokenizer(cfg.tokenizer)
    bpe = task.build_bpe(cfg.bpe)

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    scorer = scoring.build_scorer(cfg.scoring, tgt_dict)

    num_sentences = 0
    has_target = True
    wps_meter = TimeMeter()
    for si, sample in enumerate(progress):
        sample = utils.move_to_cuda(sample) if use_cuda else sample
        if "net_input" not in sample:
            continue

        prefix_tokens = None
        if cfg.generation.prefix_size > 0:
            prefix_tokens = sample["target"][:, : cfg.generation.prefix_size]

        constraints = None
        if "constraints" in sample:
            constraints = sample["constraints"]

        gen_timer.start()

        hypos = task.inference_step(
            generator,
            models,
            sample,
            prefix_tokens=prefix_tokens,
            constraints=constraints,
        )
        # print('hypos', hypos)
        num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos)
        gen_timer.stop(num_generated_tokens)
        for i, sample_id in enumerate(sample["id"].tolist()):
            has_target = sample["target"] is not None

            # Remove padding
            if "src_tokens" in sample["net_input"]:
                src_tokens = utils.strip_pad(
                    sample["net_input"]["src_tokens"][i, :], tgt_dict.pad()
                )
            else:
                src_tokens = None

            target_tokens = None
            if has_target:
                target_tokens = (
                    utils.strip_pad(sample["target"][i, :], tgt_dict.pad()).int().cpu()
                )

            # Either retrieve the original sentences or regenerate them from tokens.
            if align_dict is not None:
                src_str = task.dataset(cfg.dataset.gen_subset).src.get_original_text(
                    sample_id
                )
                target_str = task.dataset(cfg.dataset.gen_subset).tgt.get_original_text(
                    sample_id
                )
            else:
                if src_dict is not None:
                    src_str = src_dict.string(src_tokens, cfg.common_eval.post_process)
                else:
                    src_str = ""
                if has_target:
                    if token_type == 'chr':
                        target_str = tgt_dict.string(
                            target_tokens,
                            cfg.common_eval.post_process,
                            escape_unk=True,
                            extra_symbols_to_ignore=get_symbols_to_strip_from_output(
                                generator
                            ),
                        )
                    elif token_type == 'bart':
                        target_str = task.bart.decode(target_tokens.int().cpu())
                    elif token_type == 'bert':
                        target_str = task.bert.decode(target_tokens.int().cpu())
                    elif token_type == 'chrctc':
                        target_str = tgt_dict.string(
                            target_tokens,
                            cfg.common_eval.post_process,
                            escape_unk=True,
                        )
                    else:
                        raise ValueError(f'token_type not defined for {type(models[0])}')

            src_str = decode_fn(src_str)
            
            if has_target and token_type == 'chr':
                target_str = decode_fn(target_str)
            elif has_target and token_type == 'chrctc':
                target_str = ''.join(target_str.split()).replace('|', ' ')

            if not cfg.common_eval.quiet:
                if src_dict is not None:
                    print("S-{}\t{}".format(sample_id, src_str), file=output_file)
                if has_target:
                    print("T-{}\t{}".format(sample_id, target_str), file=output_file)

            # Process top predictions
            for j, hypo in enumerate(hypos[i][: cfg.generation.nbest]):
                # print('align', hypo["alignment"])
                if token_type == 'bart':
                    hypo_tokens = hypo["tokens"].int().cpu()
                    hypo_str = task.bart.decode(hypo["tokens"].int().cpu())
                    alignment = hypo["alignment"]
                elif token_type == 'chr':
                    hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                        hypo_tokens=hypo["tokens"].int().cpu(),
                        src_str=src_str,
                        alignment=hypo["alignment"],
                        align_dict=align_dict,
                        tgt_dict=tgt_dict,
                        remove_bpe=cfg.common_eval.post_process,
                        # extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator),
                    )
                elif token_type == 'chrctc':
                    hypo_tokens = hypo["tokens"].int().cpu()
                    hypo_str = task.target_dictionary.string(hypo_tokens)
                    hypo["positional_scores"] = torch.FloatTensor([0.])
                elif token_type == 'bert':
                    hypo_tokens = hypo["tokens"].int().cpu()
                    hypo_str = task.bert.decode(hypo["tokens"].int().cpu())
                    alignment = hypo["alignment"]
                else:
                    raise ValueError(f'token_type not defined for {type(models[0])}')

                detok_hypo_str = decode_fn(hypo_str)

                if token_type == 'chr' or token_type == 'chrctc':
                    print('target_str', ''.join(target_str.split()).replace('|', ' '))
                    print('typo_str', ''.join(detok_hypo_str.split()).replace('|', ' '))
                    detok_hypo_str = ''.join(detok_hypo_str.split()).replace('|', ' ')
                    # target_str = ''.join(target_str.split()).replace('|', ' ')
                elif token_type == 'bart':
                    print('target_str', target_str)
                    print('typo_str', detok_hypo_str)
                #elif token_type == 'chrctc':
                #    print('target_str', ''.join(target_str.split()).replace('|', ' '))
                #    print('typo_str', ''.join(detok_hypo_str.split()).replace('|', ' '))

                if not cfg.common_eval.quiet:
                    score = hypo["score"] / math.log(2)  # convert to base 2
                    # original hypothesis (after tokenization and BPE)
                    print(
                        "H-{}\t{}\t{}".format(sample_id, score, hypo_str),
                        file=output_file,
                    )
                    # detokenized hypothesis
                    print(
                        "D-{}\t{}\t{}".format(sample_id, score, detok_hypo_str),
                        file=output_file,
                    )
                    print(
                        "P-{}\t{}".format(
                            sample_id,
                            " ".join(
                                map(
                                    lambda x: "{:.4f}".format(x),
                                    # convert from base e to base 2
                                    hypo["positional_scores"]
                                    .div_(math.log(2))
                                    .tolist(),
                                )
                            ),
                        ),
                        file=output_file,
                    )

                    if cfg.generation.print_alignment == "hard":
                        print(
                            "A-{}\t{}".format(
                                sample_id,
                                " ".join(
                                    [
                                        "{}-{}".format(src_idx, tgt_idx)
                                        for src_idx, tgt_idx in alignment
                                    ]
                                ),
                            ),
                            file=output_file,
                        )
                    if cfg.generation.print_alignment == "soft":
                        print(
                            "A-{}\t{}".format(
                                sample_id,
                                " ".join(
                                    [
                                        ",".join(src_probs)
                                        for src_probs in alignment
                                    ]
                                ),
                            ),
                            file=output_file,
                        )

                    if cfg.generation.print_step:
                        print(
                            "I-{}\t{}".format(sample_id, hypo["steps"]),
                            file=output_file,
                        )

                    if cfg.generation.retain_iter_history:
                        for step, h in enumerate(hypo["history"]):
                            _, h_str, _ = utils.post_process_prediction(
                                hypo_tokens=h["tokens"].int().cpu(),
                                src_str=src_str,
                                alignment=None,
                                align_dict=None,
                                tgt_dict=tgt_dict,
                                remove_bpe=None,
                            )
                            print(
                                "E-{}_{}\t{}".format(sample_id, step, h_str),
                                file=output_file,
                            )

                # Score only the top hypothesis
                if has_target and j == 0:
                    if align_dict is not None or cfg.common_eval.post_process is not None:
                        # Convert back to tokens for evaluation with unk replacement and/or without BPE
                        target_tokens = tgt_dict.encode_line(
                            target_str, add_if_not_exist=True
                        )
                        hypo_tokens = tgt_dict.encode_line(
                            detok_hypo_str, add_if_not_exist=True
                        )
                    if hasattr(scorer, "add_string"):
                        # print('add_string 1', target_str, '2', detok_hypo_str)
                        # if si > 2:
                        #     raise
                        print('2', target_str, detok_hypo_str)
                        scorer.add_string(target_str, detok_hypo_str)
                    else:
                        scorer.add(target_tokens, hypo_tokens)

        wps_meter.update(num_generated_tokens)
        progress.log({"wps": round(wps_meter.avg)})
        num_sentences += (
            sample["nsentences"] if "nsentences" in sample else sample["id"].numel()
        )

    logger.info("NOTE: hypothesis and token scores are output in base 2")
    logger.info(
        "Translated {:,} sentences ({:,} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)".format(
            num_sentences,
            gen_timer.n,
            gen_timer.sum,
            num_sentences / gen_timer.sum,
            1.0 / gen_timer.avg,
        )
    )
    if has_target:
        if cfg.bpe and not cfg.generation.sacrebleu:
            if cfg.common_eval.post_process:
                logger.warning(
                    "BLEU score is being computed by splitting detokenized string on spaces, this is probably not what you want. Use --sacrebleu for standard 13a BLEU tokenization"
                )
            else:
                logger.warning(
                    "If you are using BPE on the target side, the BLEU score is computed on BPE tokens, not on proper words.  Use --sacrebleu for standard 13a BLEU tokenization"
                )
        # use print to be consistent with other main outputs: S-, H-, T-, D- and so on
        print(
            "Generate {} with beam={}: {}".format(
                cfg.dataset.gen_subset, cfg.generation.beam, scorer.result_string()
            ),
            file=output_file,
        )

    return scorer