Beispiel #1
0
def label_data():
    p = excel_reader.get_data(DATA_FROM, DATA_TO)
    np.random.seed(int(time.time()))
    #plt.plot(p)
    b, s = init_b_s_lognormal(p)
    index = comp_index_matrix(p)
    comp_loss(b, s, index)
    plt.plot(p / 4000 - 1)
    db, ds = grad_b_s(b, s, index)
    #plt.plot(ds * 10)
    #plt.show()
    lb, ls = gradient_descent(b, s, index, STEPS, LEARNING_RATE)
    plt.plot(lb)
    plt.show()
Beispiel #2
0
def label_data():
    p = excel_reader.get_data(DATA_FROM, DATA_TO,
                              'D:\python\projdata\data\\1m.xlsx')
    log_price = np.log(p)
    #plt.plot(p)
    #plt.show()
    #plt.plot(log_price)
    minutes1d = range(DATA_LENGTH)
    minutes = np.array([minutes1d]).reshape(-1, 1)
    am, bm = linear_regression(minutes, log_price)
    a = am[0, 0]
    b = bm[0]
    minute_line = range(DATA_LENGTH)
    minute_line = np.array([minutes1d]).reshape(-1, 1)
    line = minute_line * a + b
    #plt.plot(line)
    #plt.show()
    lin_reg = log_price - line
    lin_reg = lin_reg[:, 0]
    plt.plot(lin_reg)
    #conv_array = np.ones((43200,), dtype=float)/43200.
    conv_array = np.ones((40960, ), dtype=float) / 40960.
    ma = np.convolve(lin_reg, conv_array, 'same')
    plt.plot(ma)
    plt.show()
    without_month_avg = lin_reg - ma
    plt.plot(without_month_avg)
    plt.show()
    convolutions_long(without_month_avg)
    conv_array_10k = np.ones((10240, ), dtype=float) / 10240.
    ma10k = np.convolve(without_month_avg, conv_array_10k, 'same')
    without_10d_avg = without_month_avg - ma10k
    plt.plot(without_10d_avg)
    plt.show()
    convolutions_short(without_10d_avg)
    #plt.plot(ma)
    #convolutions(lin_reg)
    #min - 7000 - 0.16
    #min - 22000 - 0.16
    #0 - 38000
    #+ - 80000
    #0 - 118000
    #+ - 70000
    #0 - 188000
    #+ - 60000
    #0 - 248000
    #semi-period - 70000
    period = 125000.0
    amplitude = 0.18
    zero = 238000.0
Beispiel #3
0
def generate():
    p = excel_reader.get_data(DATA_FROM, DATA_TO,
                              'D:\python\projdata\data\\1m.xlsx')
    log_price = np.log(p)
    plt.plot(p)
    plt.show()
    plt.plot(log_price)
    plt.show()
    features, out = generate_features(log_price, DATA_FROM + 1921,
                                      DATA_TO - 60)
    features_mean = np.mean(features, axis=0)
    print('means:', features_mean)
    print(features)
    print(out)
    plt.plot(features)
    plt.show()
    plt.plot(out)
    plt.show()
Beispiel #4
0
def label_data():
    p = excel_reader.get_data(DATA_FROM, DATA_TO, 'D:\python\projdata\data\\1m.xlsx')
    log_price = np.log(p)
    #plt.plot(p)
    topology = [14, 100, 100, 50, 20, 2]
    nn = NeuralNet(topology)
    #nn = nn_factory.read('net_11_7d')
    #index = comp_index_matrix(p)
    #b, s = comp_b_s(nn, p, index)
    #plt.plot(index[0,:])
    #comp_loss(b, s, index)
    #plt.plot(p / 4000 - 1)
    #db, ds = grad_b_s(b, s, index)
    #plt.plot(ds * 10)
    #plt.show()
    lb, ls = gradient_descent(nn, p, log_price, STEPS, LEARNING_RATE)
    plt.plot(lb)
    plt.show()
    nn.save('net_final')
Beispiel #5
0
        ma_320,
        ma_640,
        ma_1280,
        ma_2560,
        ma_5120,
    ))
    features = (features - log_price[i, 0]) * 400.0
    return features


DATA_FROM, DATA_TO = 0, 100000
TRAINING_LENGTH = DATA_TO - DATA_FROM
nn = nn_factory.read('net_batch_32')
#nn = nn_factory.read('D://python/TorgovecNets/net_w_c_loss_-40')
#p = excel_reader.get_data(DATA_FROM, DATA_TO, 'D:\python\projdata\data\\btc30m.xlsx')
p = excel_reader.get_data(DATA_FROM, DATA_TO,
                          'D:\python\projdata\data\\1m_short.xlsx')
#index = comp_index_matrix(p)
log_price = np.log(p)
inf_prices = 181
print('TEST')
wallet_btc = 1.0
wallet_usd = 0.0
sell_flag = True
trades_btc = 0
trades_usd = 0
activations = np.zeros((TRAINING_LENGTH, 2))
hold_btc = 0
hold_usd = 0
sell_btc = np.zeros((TRAINING_LENGTH, 1))
buy_btc = np.zeros((TRAINING_LENGTH, 1))
#treshhold = random.random()