def plot_bumps_on_data(X, bumps, palette='Set1'):
    plot_data_embedded(X, palette='w')

    colors = sns.color_palette(palette, n_colors=len(bumps))
    colors = [mpl_colors.to_hex(c) for c in colors]
    np.random.shuffle(colors)
    for i, (b, c) in enumerate(zip(bumps, colors)):
        alpha = np.maximum(b, 0) / b.max()
        plot_data_embedded(X, palette=c, alpha=alpha)
Beispiel #2
0
def process_curves():
    with open('bunny_processed.pickle', mode='r+b') as f:
        bunny_dict = pickle.load(f)
        circle_clustered_dict = pickle.load(f)

    plt.figure(figsize=(10, 6), tight_layout=True)
    gs = gridspec.GridSpec(3, 6)

    bunny_idx = [0, 40, 80, 174, 524, 699]
    # bunny_idx = np.linspace(0, len(bunny_dict) - 1, num=5, endpoint=True,
    #                         dtype=np.int)

    for i, idx in enumerate(bunny_idx):
        print(idx)
        curve = bunny_dict[idx]
        Y = sdp_km_burer_monteiro(curve, 20, rank=len(curve),
                                  tol=1e-6, maxiter=5000, verbose=True)
        Q = Y.dot(Y.T)
        labels = np.arange(len(curve))

        ax = plt.subplot(gs[0, i])
        plot_data_embedded(curve, s=2, ax=ax)
        ax = plt.subplot(gs[1, i])
        plot_matrix(Q, labels=labels, labels_palette='hls', ax=ax)
        ax = plt.subplot(gs[2, i])
        plot_bumps_1d(Y, subsampling=10, labels=labels, labels_palette='hls',
                      ax=ax)

    plt.savefig(dir_name + 'bunny_deformation.pdf', dpi=300)
    plt.show()

    plt.figure(figsize=(10, 6), tight_layout=True)
    gs = gridspec.GridSpec(3, 6)

    circle_idx = [1, 3, 5, 7, 10, 199]
    # circle_idx = np.linspace(1, len(circle_clustered_dict), num=5,
    #                          endpoint=True, dtype=np.int)

    for i, idx in enumerate(circle_idx):
        print(idx)
        curve = circle_clustered_dict[idx]
        Y = sdp_km_burer_monteiro(curve, 4, rank=len(curve),
                                  tol=1e-6, maxiter=5000, verbose=True)
        Q = Y.dot(Y.T)
        labels = np.arange(len(curve))

        ax = plt.subplot(gs[0, i])
        plot_data_embedded(curve, s=2, ax=ax)
        ax = plt.subplot(gs[1, i])
        plot_matrix(Q, labels=labels, labels_palette='hls', ax=ax)
        ax = plt.subplot(gs[2, i])
        plot_bumps_1d(Y, subsampling=15, labels=labels, labels_palette='hls',
                      ax=ax)

    plt.savefig(dir_name + 'circle_deformation.pdf', dpi=300)
    plt.show()
Beispiel #3
0
def plot_bumps_on_data(X, bumps, palette='Set1', ax=None):
    if ax is None:
        ax = plt.gca()

    plot_data_embedded(X, palette='w', edgecolors='k', ax=ax)

    colors = sns.color_palette(palette, n_colors=len(bumps))
    colors = [mpl_colors.to_hex(c) for c in colors]
    np.random.shuffle(colors)
    for i, (b, c) in enumerate(zip(bumps, colors)):
        alpha = np.maximum(b, 0) / b.max()
        plot_data_embedded(X, palette=c, alpha=alpha, edgecolors='none', ax=ax)
def plot_bumps_on_data(X, bumps, palette='Set1', ax=None):
    if ax is None:
        ax = plt.gca()

    # Plot the sphere
    u = np.linspace(0, 2 * np.pi, 100)
    v = np.linspace(0, np.pi, 100)
    ax.plot_surface(0.99 * np.outer(np.cos(u), np.sin(v)),
                    0.99 * np.outer(np.sin(u), np.sin(v)),
                    0.99 * np.outer(np.ones(np.size(u)), np.cos(v)),
                    color='w',
                    edgecolors='#AAAAAA',
                    alpha=1)

    plot_data_embedded(X, palette='w', edgecolors='k', ax=ax)

    colors = sns.color_palette(palette, n_colors=len(bumps))
    colors = [mpl_colors.to_hex(c) for c in colors]
    for i, (b, c) in enumerate(zip(bumps, colors)):
        alpha = np.maximum(b, 0) / b.max()
        plot_data_embedded(X, palette=c, alpha=alpha, edgecolors='none', ax=ax)
def test_grid(n_clusters=16, use_copositive=False):
    X = np.mgrid[0:16, 0:16]
    X = X.reshape((len(X), -1)).T
    labels = np.arange(len(X))

    # X_norm = X - np.mean(X, axis=0)
    # cov = X_norm.T.dot(X_norm)
    # X_norm /= np.trace(cov.dot(cov)) ** 0.25
    #
    # alpha = 0.001
    # plt.matshow(np.maximum(X_norm.dot(X_norm.T) - alpha, 0), cmap='gray_r')
    #
    # from scipy.spatial.distance import pdist, squareform
    # plt.matshow(squareform(pdist(X)), cmap='gray_r')
    #
    # return

    rank = len(X)
    print(rank)
    if use_copositive:
        beta = n_clusters / len(X)
        Y = copositive_burer_monteiro(X,
                                      alpha=0.003,
                                      beta=beta,
                                      rank=rank,
                                      tol=1e-5,
                                      constraint_tol=1e-5,
                                      verbose=True)
        name = 'grid_copositive_bm'
    else:
        Y = sdp_km_burer_monteiro(X,
                                  n_clusters,
                                  rank=rank,
                                  tol=1e-6,
                                  verbose=True)
        name = 'grid_sdpkm_bm'

    Q = Y.dot(Y.T)

    idx = np.argsort(np.argmax(Y, axis=0))
    Y = Y[:, idx]

    sns.set_style('white')

    plt.figure(figsize=(12, 4.7), tight_layout=True)
    gs = gridspec.GridSpec(1, 3)

    ax = plt.subplot(gs[0])
    plot_data_embedded(X, palette='hls', ax=ax)
    plt_title = ax.set_title('Input dataset', fontsize='xx-large')
    # plt_title.set_position((0.5, 1.07))

    ax = plt.subplot(gs[1])
    plot_matrix(Q,
                ax=ax,
                labels=labels,
                which_labels='both',
                labels_palette='hls')
    plt_title = ax.set_title(r'$\mathbf{Q}$', fontsize='xx-large')
    plt_title.set_position((0.5, 1.07))

    ax = plt.subplot(gs[2])
    plot_matrix(Y,
                ax=ax,
                labels=labels,
                which_labels='vertical',
                labels_palette='hls')
    plt_title = ax.set_title(r'$\mathbf{Y}^\top$', fontsize='xx-large')
    plt_title.set_position((0.5, 1.07))

    plt.savefig('{}{}.pdf'.format(dir_name, name))

    pdf_file_name = '{}{}_plot_{}_on_data_{}{}'
    for i in range(Y.shape[1]):
        plt.figure()
        plot_bumps_on_data(X, [Y[:, i]])
        plt.savefig(pdf_file_name.format(dir_name, name, 'Y', i, '.png'),
                    dpi=300,
                    bbox_inches='tight')
        plt.close()

    pdf_file_name = '{}{}_plot_{}_on_data_{}'
    plt.figure()
    bumps_locs = np.random.random_integers(Y.shape[1], size=6)
    plot_bumps_on_data(X, [Y[:, i] for i in bumps_locs], palette='Set1')
    plt.savefig(pdf_file_name.format(dir_name, name, 'Y', 'multiple.png'),
                dpi=300,
                bbox_inches='tight')

    Y_aligned = align_bumps(Y, Y.shape[1] // 2)

    _, ax = plt.subplots(1, 1)
    plot_matrix(Y_aligned, ax=ax)
    plt_title = ax.set_title(r'Aligned $\mathbf{Y}^\top$', fontsize='xx-large')
    plt_title.set_position((0.5, 1.07))
    plt.savefig('{}{}_Y_aligned_2d.pdf'.format(dir_name, name))

    _, ax = plt.subplots(1, 1)
    ax.plot(Y_aligned)
    ax.set_xticks([])
    ax.set_yticks([])
    ax.set_title(r'Receptive fields', fontsize='xx-large')
    plt.savefig('{}{}Y_aligned_1d.pdf'.format(dir_name, name))

    pos = np.arange(len(Y))
    median = np.median(Y_aligned, axis=1)
    mu = np.mean(Y_aligned, axis=1)
    sigma = np.std(Y_aligned, axis=1)

    _, ax = plt.subplots(1, 1)
    plt_mean = ax.plot(pos, mu, color='#377eb8')
    ax.fill_between(pos,
                    np.maximum(mu - 3 * sigma, 0),
                    mu + 3 * sigma,
                    alpha=0.3,
                    color='#377eb8')
    plt_median = ax.plot(pos, median, '-.', color='#e41a1c')
    ax.set_xticks([])
    ax.set_yticks([])
    plt_aux = ax.fill(np.NaN, np.NaN, '#377eb8', alpha=0.3, linewidth=0)
    ax.legend([(plt_mean[0], plt_aux[0]), plt_median[0]],
              [r'Mean $\pm$ 3 STD', 'Median'],
              loc='upper left',
              fontsize='xx-large')
    ax.set_title(r'Receptive fields summary', fontsize='xx-large')
    plt.savefig('{}{}Y_aligned_1d_summary.pdf'.format(dir_name, name))
Beispiel #6
0
def test_toy_embedding(X,
                       Y,
                       target_dim,
                       filename,
                       palette='hls',
                       elev_azim=None):
    print('--------\n', filename)

    embedding = spectral_embedding(Y,
                                   target_dim=target_dim,
                                   gramian=False,
                                   discard_first=False)

    D = dot_matrix(X)
    Q = Y.dot(Y.T)
    labels = np.arange(len(X))

    sns.set_style('white')

    plt.figure(figsize=(20, 5), tight_layout=True)
    gs = gridspec.GridSpec(1, 5)

    if X.shape[1] == 3:
        ax = plt.subplot(gs[0], projection='3d')
    else:
        ax = plt.subplot(gs[0])
    plot_data_embedded(X, ax=ax, palette=palette, elev_azim=elev_azim)
    ax.set_title('Input dataset', fontsize='xx-large')

    titles = [
        r'Input Gramian $\mathbf{X}^\top \mathbf{X}$',
        r'$\mathbf{Y}^\top \mathbf{Y}$'
    ]
    for i, (M, t) in enumerate(zip([D, Q], titles)):
        ax = plt.subplot(gs[i + 1])
        plot_matrix(M,
                    ax=ax,
                    labels=labels,
                    which_labels='both',
                    labels_palette=palette,
                    colorbar_labelsize=15)
        plt_title = ax.set_title(t, fontsize=25)
        plt_title.set_position((0.5, 1.07))

    ax = plt.subplot(gs[3])
    plot_matrix(Y,
                ax=ax,
                labels=labels,
                which_labels='vertical',
                labels_palette=palette,
                colorbar_labelsize=15)
    title_y = r'$\mathbf{Y}^\top$ ($'
    plt_title = ax.set_title(title_y, fontsize=25)
    plt_title.set_position((0.5, 1.07))

    if target_dim == 2:
        ax = plt.subplot(gs[4])
    if target_dim == 3:
        ax = plt.subplot(gs[4], projection='3d')
    plot_data_embedded(embedding, ax=ax, palette=palette)
    ax.set_title('2D embedding', fontsize=25)
    plt.savefig('{}{}.pdf'.format(dir_name, filename), dpi=300)

    fig = plt.figure()
    if target_dim == 2:
        ax = fig.add_subplot(111)
    if target_dim == 3:
        ax = fig.add_subplot(111, projection='3d')
    plot_data_embedded(embedding, ax=ax, palette=palette)
    plt.savefig('{}{}_embedding.pdf'.format(dir_name, filename), dpi=300)

    # pdf_file_name = '{}{}_plot_{}_on_data_{}{}'
    # for i in range(Y.shape[1]):
    #     plt.figure()
    #     plot_bumps_on_data(embedding, [Y[:, i]])
    #     plt.savefig(pdf_file_name.format(dir_name, filename, 'Y', i, '.png'),
    #                 dpi=300)
    #     plt.close()

    pdf_file_name = '{}{}_plot_{}_on_data_{}'
    plt.figure()
    if target_dim == 2:
        ax = fig.add_subplot(111)
    if target_dim == 3:
        ax = fig.add_subplot(111, projection='3d')
    plot_bumps_on_data(embedding, [Y[:, i] for i in range(0, Y.shape[1], 10)],
                       ax=ax)
    plt.savefig(pdf_file_name.format(dir_name, filename, 'Y', 'multiple.pdf'),
                dpi=300)

    pdf_file_name = '{}{}_plot_{}_1d{}'
    _, ax = plt.subplots(1, 1)
    plot_bumps_1d(Y, subsampling=10, labels=labels, ax=ax)
    ax.set_yticks([])
    ax.set_title(r'Rows of $\mathbf{Y}$', fontsize=25)
    plt.savefig(pdf_file_name.format(dir_name, filename, 'Y', '.pdf'), dpi=300)
def test_one_circle(n_clusters=25, use_copositive=False):
    np.random.seed(10)

    X = sphere.generate_sphere_grid()
    print(X.shape)
    labels = np.arange(len(X))

    rank = 4 * n_clusters
    print(rank)
    if use_copositive:
        beta = n_clusters / len(X)
        Y = copositive_burer_monteiro(X,
                                      alpha=0.0048,
                                      beta=beta,
                                      rank=rank,
                                      tol=1e-6,
                                      constraint_tol=1e-6,
                                      verbose=True)
        name = 'sphere_copositive_bm'
    else:
        Y = sdp_km_burer_monteiro(X,
                                  n_clusters,
                                  rank=rank,
                                  tol=1e-5,
                                  verbose=True)
        name = 'sphere_sdpkm_bm'

    Q = Y.dot(Y.T)

    idx = np.argsort(np.argmax(Y, axis=0))
    Y = Y[:, idx]

    Y_aligned = align_bumps(Y, Y.shape[1] // 2)

    scipy.io.savemat(name + '.mat', {'X': X, 'Y': Y})

    sns.set_style('white')

    plt.figure(figsize=(12, 5), tight_layout=True)
    gs = gridspec.GridSpec(1, 3)

    ax = plt.subplot(gs[0], projection='3d')
    plot_data_embedded(X, palette='hls', ax=ax)
    ax.set_title('Input dataset', fontsize='xx-large')

    ax = plt.subplot(gs[1])
    plot_matrix(Q,
                ax=ax,
                labels=labels,
                which_labels='both',
                labels_palette='hls')
    plt_title = ax.set_title(r'$\mathbf{Q}$', fontsize='xx-large')
    plt_title.set_position((0.5, 1.07))

    ax = plt.subplot(gs[2])
    plot_matrix(Y,
                ax=ax,
                labels=labels,
                which_labels='vertical',
                labels_palette='hls')
    plt_title = ax.set_title(r'$\mathbf{Y}^\top$', fontsize='xx-large')
    plt_title.set_position((0.5, 1.07))

    plt.savefig('{}{}.pdf'.format(dir_name, name), dpi=300)
Beispiel #8
0
def test_one_circle(X,
                    Y,
                    name,
                    bump_subsampling=20,
                    cos_freq=0.13,
                    cos_loc=None):
    labels = np.arange(len(X))
    Q = Y.dot(Y.T)

    idx = np.argsort(np.argmax(Y, axis=0))
    Y = Y[:, idx]

    Y_aligned = align_bumps(Y, Y.shape[1] // 2)

    sns.set_style('white')

    plt.figure(figsize=(12, 5), tight_layout=True)
    gs = gridspec.GridSpec(1, 3)

    ax = plt.subplot(gs[0])
    plot_data_embedded(X, palette='hls', ax=ax)
    ax.set_title('Input dataset', fontsize=30)

    ax = plt.subplot(gs[1])
    plot_matrix(Q,
                ax=ax,
                labels=labels,
                which_labels='both',
                labels_palette='hls',
                colorbar_labelsize=15)
    plt_title = ax.set_title(r'$\mathbf{Y}^\top \mathbf{Y}$', fontsize=25)
    plt_title.set_position((0.5, 1.07))

    ax = plt.subplot(gs[2])
    plot_matrix(Y,
                ax=ax,
                labels=labels,
                which_labels='vertical',
                labels_palette='hls',
                colorbar_labelsize=15)
    plt_title = ax.set_title(r'$\mathbf{Y}^\top$', fontsize=25)
    plt_title.set_position((0.5, 1.07))

    plt.savefig('{}{}.pdf'.format(dir_name, name), dpi=300)

    # pdf_file_name = '{}{}_plot_{}_on_data_{}{}'
    # for i in range(Y.shape[1]):
    #     plt.figure()
    #     plot_bumps_on_data(X, [Y[:, i]])
    #     plt.savefig(pdf_file_name.format(dir_name, name, 'Y', i, '.png'),
    #                 dpi=300)
    #     plt.close()

    pdf_file_name = '{}{}_plot_{}_on_data_{}'
    plt.figure()
    bumps_locs = np.linspace(0,
                             Y.shape[1],
                             num=6,
                             endpoint=False,
                             dtype=np.int)
    plot_bumps_on_data(X, [Y[:, i] for i in bumps_locs], palette='Set1')
    plt.savefig(pdf_file_name.format(dir_name, name, 'Y', 'multiple.png'),
                dpi=300)

    _, ax = plt.subplots(1, 1)
    plot_matrix(Y_aligned, ax=ax)
    plt_title = ax.set_title('Aligned receptive fields', fontsize=25)
    plt_title.set_position((0.5, 1.07))
    plt.savefig('{}{}_Y_aligned_2d.pdf'.format(dir_name, name), dpi=300)

    _, ax = plt.subplots(1, 1)
    plot_bumps_1d(Y, labels=labels, ax=ax, subsampling=bump_subsampling)
    ax.set_title('Receptive fields', fontsize=25)
    plt.savefig('{}{}Y_1d.pdf'.format(dir_name, name), dpi=300)

    _, ax = plt.subplots(1, 1)
    ax.plot(Y_aligned)
    ax.set_xticks([])
    ax.set_yticks([])
    ax.set_title('Aligned receptive fields', fontsize=25)
    plt.savefig('{}{}Y_aligned_1d.pdf'.format(dir_name, name), dpi=300)

    pos = np.arange(len(Y))
    # median = np.median(Y_aligned, axis=1)
    mu = np.mean(Y_aligned, axis=1)
    sigma = np.std(Y_aligned, axis=1)

    def cosine(x):
        peak = np.argmax(mu)
        if cos_loc is None:
            cloc = np.mean(np.where(mu == mu[peak])[0])
        else:
            cloc = cos_loc
        cos_bump = mu[peak] * np.cos(cos_freq * (x - cloc))
        cos_bump[mu == 0] = 0
        cos_bump[cos_bump < 0] = 0
        return cos_bump

    _, ax = plt.subplots(1, 1)
    plt_mean = ax.plot(pos, mu, color='#377eb8')
    ax.fill_between(pos,
                    np.maximum(mu - 3 * sigma, 0),
                    mu + 3 * sigma,
                    alpha=0.3,
                    color='#377eb8')
    plt_cosine = ax.plot(pos, cosine(pos), '-.', color='#e41a1c')
    ax.set_xticks([])
    ax.set_yticks([])
    plt_aux = ax.fill(np.NaN, np.NaN, '#377eb8', alpha=0.3, linewidth=0)
    ax.legend([(plt_mean[0], plt_aux[0]), plt_cosine[0]],
              [r'Mean $\pm$ 3 STD', 'Truncated cosine'],
              loc='center left',
              fontsize=25)
    ax.set_title(r'Receptive fields summary', fontsize=25)
    plt.savefig('{}{}Y_aligned_1d_summary.pdf'.format(dir_name, name), dpi=300)