def test_comp_result(self): for i in range(self.split_num): data_model = GagesModel.load_datamodel(self.config_data.data_path["Temp"], str(i), data_source_file_name='test_data_source.txt', stat_file_name='test_Statistics.json', flow_file_name='test_flow.npy', forcing_file_name='test_forcing.npy', attr_file_name='test_attr.npy', f_dict_file_name='test_dictFactorize.json', var_dict_file_name='test_dictAttribute.json', t_s_dict_file_name='test_dictTimeSpace.json') data_model_majordam = GagesModel.load_datamodel(self.config_data.data_path["Temp"], str(i), data_source_file_name='test_data_source_majordam.txt', stat_file_name='test_Statistics_majordam.json', flow_file_name='test_flow_majordam.npy', forcing_file_name='test_forcing_majordam.npy', attr_file_name='test_attr_majordam.npy', f_dict_file_name='test_dictFactorize_majordam.json', var_dict_file_name='test_dictAttribute_majordam.json', t_s_dict_file_name='test_dictTimeSpace_majordam.json') pred, obs = load_result(data_model.data_source.data_config.data_path['Temp'], self.test_epoch) pred = pred.reshape(pred.shape[0], pred.shape[1]) obs = obs.reshape(obs.shape[0], obs.shape[1]) inds = statError(obs, pred) inds['STAID'] = data_model.t_s_dict["sites_id"] inds_df = pd.DataFrame(inds) pred_majordam, obs_majordam = load_result(data_model_majordam.data_source.data_config.data_path['Temp'], self.test_epoch, pred_name='flow_pred_majordam', obs_name='flow_obs_majordam') pred_majordam = pred_majordam.reshape(pred_majordam.shape[0], pred_majordam.shape[1]) obs_majordam = obs_majordam.reshape(obs_majordam.shape[0], obs_majordam.shape[1]) inds_majordam = statError(obs_majordam, pred_majordam) inds_majordam['STAID'] = data_model_majordam.t_s_dict["sites_id"] inds_majordam_df = pd.DataFrame(inds_majordam) keys_nse = "NSE" xs = [] ys = [] cases_exps_legends_together = ["PUB_test_in_no-major-dam_basins", "PUB_test_in_major-dam_basins"] x1, y1 = ecdf(inds_df[keys_nse]) xs.append(x1) ys.append(y1) x2, y2 = ecdf(inds_majordam_df[keys_nse]) xs.append(x2) ys.append(y2) plot_ecdfs(xs, ys, cases_exps_legends_together)
def test_plot_ecdf_together(self): xs = [] ys = [] cases_exps = ["basic_exp37", "basic_exp39"] cases_exps_legends = ["random_1234", "random_123"] test_epoch = 300 for case_exp in cases_exps: config_data_i = load_dataconfig_case_exp(cfg, case_exp) pred_i, obs_i = load_result(config_data_i.data_path['Temp'], test_epoch) pred_i = pred_i.reshape(pred_i.shape[0], pred_i.shape[1]) obs_i = obs_i.reshape(obs_i.shape[0], obs_i.shape[1]) inds_i = statError(obs_i, pred_i) x, y = ecdf(inds_i[self.keys[0]]) xs.append(x) ys.append(y) plot_ecdfs(xs, ys, cases_exps_legends, x_str="NSE", y_str="CDF") # cases_exps_addition = ["basic_exp39"] # xs_addition = [] # ys_addition = [] # for case_exp in cases_exps_addition: # config_data_i = load_dataconfig_case_exp(cfg, case_exp) # pred_i, obs_i = load_result(config_data_i.data_path['Temp'], test_epoch) # pred_i = pred_i.reshape(pred_i.shape[0], pred_i.shape[1]) # obs_i = obs_i.reshape(obs_i.shape[0], obs_i.shape[1]) # inds_i = statError(obs_i, pred_i) # x, y = ecdf(inds_i[self.keys[0]]) # xs_addition.append(x) # ys_addition.append(y) # plot_ecdfs(xs_addition, ys_addition, ["new"], x_str="NSE", y_str="CDF") plt.show()
def test_plot_ecdf_matplotlib(self): xs = [] ys = [] cases_exps = [ "basic_exp37", "basic_exp39", "basic_exp40", "basic_exp41", "basic_exp42" ] cases_exps_legends = [ "random_1234", "random_123", "random_12345", "random_111", "random_1111" ] test_epoch = 300 for case_exp in cases_exps: config_data_i = load_dataconfig_case_exp(cfg, case_exp) pred_i, obs_i = load_result(config_data_i.data_path['Temp'], test_epoch) pred_i = pred_i.reshape(pred_i.shape[0], pred_i.shape[1]) obs_i = obs_i.reshape(obs_i.shape[0], obs_i.shape[1]) inds_i = statError(obs_i, pred_i) x, y = ecdf(inds_i[self.keys[0]]) xs.append(x) ys.append(y) dash_lines = [False, False, False, False, True] plot_ecdfs_matplot( xs, ys, cases_exps_legends, colors=["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "grey"], dash_lines=dash_lines, x_str="NSE", y_str="CDF") plt.show()
def plot_ecdf(mydataframe, mycolumn, save_file=None): """Empirical cumulative distribution function""" x, y = ecdf(mydataframe[mycolumn]) df = pd.DataFrame({"x": x, "y": y}) sns.set_style("ticks", {'axes.grid': True}) sns.lineplot(x="x", y="y", data=df, estimator=None).set(xlim=(0, 1), xticks=np.arange(0, 1, 0.05), yticks=np.arange(0, 1, 0.05)) plt.show() if save_file is not None: plt.savefig(save_file)
def test_plot_ecdf_together(self): xs = [] ys = [] cases_exps = ["basic_exp38", "warmup_exp1"] cases_exps_legends = ["without_warmup", "with_warmup"] for case_exp in cases_exps: config_data_i = load_dataconfig_case_exp(case_exp) pred_i, obs_i = load_result(config_data_i.data_path['Temp'], self.test_epoch) pred_i = pred_i.reshape(pred_i.shape[0], pred_i.shape[1]) obs_i = obs_i.reshape(obs_i.shape[0], obs_i.shape[1]) inds_i = statError(obs_i, pred_i) x, y = ecdf(inds_i["NSE"]) xs.append(x) ys.append(y) plot_ecdfs(xs, ys, cases_exps_legends)
x_intervals = [50, 0.1, 0.1, 0.1, 50, 50] x_lims = [(-200, 200), (0, 1), (0, 1), (0, 1), (-100, 300), (-100, 300)] show_legends = [True, False, False, False, False, False] idx_tmp = 0 cdf_values = edict() for key_tmp in keys_ecdf: cdf_values[key_tmp] = edict() xs = [] ys = [] # cases_exps_legends = ["523sites_from_LSTM-CONUS", "523sites_trained_in_LSTM-CAMELS"] cases_exps_legends = [ "Train: 3557 basins; Test: 523 basins in CAMELS", "Train: 523 basins in CAMELS; Test: 523 basins in CAMELS", "Train: 3557 basins; Test: 3557 basins" ] x1, y1 = ecdf(inds_df[key_tmp].iloc[idx_lst_camels]) xs.append(x1) ys.append(y1) cdf_values[key_tmp][cases_exps_legends[0]] = [x1, y1] x2, y2 = ecdf(inds_df_camels[key_tmp]) xs.append(x2) ys.append(y2) cdf_values[key_tmp][cases_exps_legends[1]] = [x2, y2] x_conus, y_conus = ecdf(inds_df[key_tmp]) xs.append(x_conus) ys.append(y_conus) cdf_values[key_tmp][cases_exps_legends[2]] = [x_conus, y_conus] # plot_ecdfs(xs, ys, cases_exps_legends, x_str="NSE", y_str="CDF")
inds_df_conus = load_ensemble_result(cfg, conus_exps, test_epoch) plt.rcParams['font.family'] = 'serif' plt.rcParams['font.serif'] = ['Times New Roman' ] + plt.rcParams['font.serif'] sns.set(font="serif", font_scale=1.5) fig = plt.figure(figsize=(12, 4)) gs = gridspec.GridSpec(1, 3) keys_nse = "NSE" xs_nodam = [] ys_nodam = [] cases_exps_legends_nodam = [ "no_dam_alone", "no_dam_in_pair1", "no_dam_in_pair2", "no_dam_in_conus" ] inds_df_nodam = load_ensemble_result(cfg, nodam_exp_lst, test_epoch) x_nodam_solo, y_nodam_solo = ecdf(inds_df_nodam[keys_nse]) xs_nodam.append(x_nodam_solo) ys_nodam.append(y_nodam_solo) x_nodam_pair1, y_nodam_pair1 = ecdf( inds_df_pair1[keys_nse].iloc[idx_lst_nodam_in_pair1]) xs_nodam.append(x_nodam_pair1) ys_nodam.append(y_nodam_pair1) x_nodam_pair2, y_nodam_pair2 = ecdf( inds_df_pair2[keys_nse].iloc[idx_lst_nodam_in_pair2]) xs_nodam.append(x_nodam_pair2) ys_nodam.append(y_nodam_pair2) x_nodam_conus, y_nodam_conus = ecdf( inds_df_conus[keys_nse].iloc[idx_lst_nodam_in_conus]) xs_nodam.append(x_nodam_conus) ys_nodam.append(y_nodam_conus) ax1 = plt.subplot(gs[0])
def test_diff_dor_fig2_in_the_paper(self): data_model = GagesModel.load_datamodel( self.config_data.data_path["Temp"], data_source_file_name='data_source.txt', stat_file_name='Statistics.json', flow_file_name='flow.npy', forcing_file_name='forcing.npy', attr_file_name='attr.npy', f_dict_file_name='dictFactorize.json', var_dict_file_name='dictAttribute.json', t_s_dict_file_name='dictTimeSpace.json') config_data = self.config_data config_file = self.config_file test_epoch = self.test_epoch exp_lst = self.exp_lst figure_dpi = self.FIGURE_DPI inds_df, pred_mean, obs_mean = load_ensemble_result(config_file, exp_lst, test_epoch, return_value=True) diversion_yes = True diversion_no = False source_data_diversion = GagesSource.choose_some_basins( config_data, config_data.model_dict["data"]["tRangeTrain"], screen_basin_area_huc4=False, diversion=diversion_yes) source_data_nodivert = GagesSource.choose_some_basins( config_data, config_data.model_dict["data"]["tRangeTrain"], screen_basin_area_huc4=False, diversion=diversion_no) sites_id_nodivert = source_data_nodivert.all_configs[ 'flow_screen_gage_id'] sites_id_diversion = source_data_diversion.all_configs[ 'flow_screen_gage_id'] dor_1 = -self.dor dor_2 = self.dor source_data_dor1 = GagesSource.choose_some_basins( config_data, config_data.model_dict["data"]["tRangeTrain"], screen_basin_area_huc4=False, DOR=dor_1) source_data_dor2 = GagesSource.choose_some_basins( config_data, config_data.model_dict["data"]["tRangeTrain"], screen_basin_area_huc4=False, DOR=dor_2) sites_id_dor1 = source_data_dor1.all_configs['flow_screen_gage_id'] sites_id_dor2 = source_data_dor2.all_configs['flow_screen_gage_id'] # basins with dams source_data_withdams = GagesSource.choose_some_basins( config_data, config_data.model_dict["data"]["tRangeTrain"], screen_basin_area_huc4=False, dam_num=[1, 100000]) sites_id_withdams = source_data_withdams.all_configs[ 'flow_screen_gage_id'] sites_id_dor1 = np.intersect1d(np.array(sites_id_dor1), np.array(sites_id_withdams)).tolist() no_divert_small_dor = np.intersect1d(sites_id_nodivert, sites_id_dor1) no_divert_large_dor = np.intersect1d(sites_id_nodivert, sites_id_dor2) diversion_small_dor = np.intersect1d(sites_id_diversion, sites_id_dor1) diversion_large_dor = np.intersect1d(sites_id_diversion, sites_id_dor2) all_sites = data_model.t_s_dict["sites_id"] idx_lst_nodivert_smalldor = [ i for i in range(len(all_sites)) if all_sites[i] in no_divert_small_dor ] idx_lst_nodivert_largedor = [ i for i in range(len(all_sites)) if all_sites[i] in no_divert_large_dor ] idx_lst_diversion_smalldor = [ i for i in range(len(all_sites)) if all_sites[i] in diversion_small_dor ] idx_lst_diversion_largedor = [ i for i in range(len(all_sites)) if all_sites[i] in diversion_large_dor ] keys_nse = "NSE" xs = [] ys = [] cases_exps_legends_together = [ "not_diverted_small_dor", "not_diverted_large_dor", "diversion_small_dor", "diversion_large_dor", "CONUS" ] x1, y1 = ecdf(inds_df[keys_nse].iloc[idx_lst_nodivert_smalldor]) xs.append(x1) ys.append(y1) x2, y2 = ecdf(inds_df[keys_nse].iloc[idx_lst_nodivert_largedor]) xs.append(x2) ys.append(y2) x3, y3 = ecdf(inds_df[keys_nse].iloc[idx_lst_diversion_smalldor]) xs.append(x3) ys.append(y3) x4, y4 = ecdf(inds_df[keys_nse].iloc[idx_lst_diversion_largedor]) xs.append(x4) ys.append(y4) x_conus, y_conus = ecdf(inds_df[keys_nse]) xs.append(x_conus) ys.append(y_conus) hydro_logger.info( "The median NSEs of all five curves (%s) are \n %.2f, %.2f, %.2f, %.2f, %.2f", cases_exps_legends_together, np.median(x1), np.median(x2), np.median(x3), np.median(x4), np.median(x_conus)) # plot_ecdfs_matplot(xs, ys, cases_exps_legends_together, # colors=["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "grey"], # dash_lines=[False, False, False, False, True], x_str="NSE", y_str="CDF") # plot using two linestyles and two colors for dor and diversion. # plot_ecdfs(xs, ys, cases_exps_legends_together, x_str="NSE", y_str="CDF") # define color scheme and line style colors = ["#1f77b4", "#d62728"] linestyles = ['-', "--"] markers = ["", "."] fig = plt.figure(figsize=(8, 6)) axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # for i, marker in enumerate(markers): for i, linestyle in enumerate(linestyles): for j, color in enumerate(colors): plt.plot( xs[i * 2 + j], ys[i * 2 + j], color=color, ls=linestyle, # marker=marker, label=cases_exps_legends_together[i * 2 + j]) line_i, = axes.plot(x_conus, y_conus, color="grey", label=cases_exps_legends_together[4]) line_i.set_dashes([2, 2, 10, 2]) x_str = "NSE" y_str = "CDF" x_lim = (0, 1) y_lim = (0, 1) x_interval = 0.1 y_interval = 0.1 plt.xlabel(x_str, fontsize=18) plt.ylabel(y_str, fontsize=18) axes.set_xlim(x_lim[0], x_lim[1]) axes.set_ylim(y_lim[0], y_lim[1]) # set x y number font size plt.xticks(np.arange(x_lim[0], x_lim[1] + x_lim[1] / 100, x_interval), fontsize=16) plt.yticks(np.arange(y_lim[0], y_lim[1] + y_lim[1] / 100, y_interval), fontsize=16) plt.grid() # Hide the right and top spines axes.spines['right'].set_visible(False) axes.spines['top'].set_visible(False) axes.legend() plt.legend(prop={'size': 16}) plt.savefig(os.path.join(config_data.data_path["Out"], 'new_dor_divert_comp_matplotlib.png'), dpi=figure_dpi, bbox_inches="tight") plt.show()
def test_gages_nse_dam_attr(self): figure_dpi = 600 config_data = self.config_data data_dir = config_data.data_path["Temp"] data_model = GagesModel.load_datamodel( data_dir, data_source_file_name='test_data_source.txt', stat_file_name='test_Statistics.json', flow_file_name='test_flow.npy', forcing_file_name='test_forcing.npy', attr_file_name='test_attr.npy', f_dict_file_name='test_dictFactorize.json', var_dict_file_name='test_dictAttribute.json', t_s_dict_file_name='test_dictTimeSpace.json') gages_id = data_model.t_s_dict["sites_id"] exp_lst = [ "basic_exp37", "basic_exp39", "basic_exp40", "basic_exp41", "basic_exp42", "basic_exp43" ] self.inds_df, pred_mean, obs_mean = load_ensemble_result( config_data.config_file, exp_lst, config_data.config_file.TEST_EPOCH, return_value=True) show_ind_key = 'NSE' plt.rcParams['font.family'] = 'serif' plt.rcParams['font.serif'] = ['Times New Roman' ] + plt.rcParams['font.serif'] # plot NSE-DOR attr_lst = ["RUNAVE7100", "STOR_NOR_2009"] attrs_runavg_stor = data_model.data_source.read_attr( gages_id, attr_lst, is_return_dict=False) run_avg = attrs_runavg_stor[:, 0] * (10**(-3)) * (10**6 ) # m^3 per year nor_storage = attrs_runavg_stor[:, 1] * 1000 # m^3 dors = nor_storage / run_avg # dor = 0 is not totally same with dam_num=0 (some dammed basins' dor is about 0.00), # here for zero-dor we mainly rely on dam_num = 0 attr_dam_num = ["NDAMS_2009"] attrs_dam_num = data_model.data_source.read_attr(gages_id, attr_dam_num, is_return_dict=False) df = pd.DataFrame({ "DOR": dors, "DAM_NUM": attrs_dam_num[:, 0], show_ind_key: self.inds_df[show_ind_key].values }) hydro_logger.info("statistics of dors:\n %s", df.describe()) hydro_logger.info("percentiles of dors:\n %s", df.quantile(q=0.95)) hydro_logger.info("ecdf of dors:\n %s", ecdf(dors)) # boxplot # add a column to represent the dor range for the df dor_value_range_lst = [[0, 0], [0, 0.02], [0.02, 0.05], [0.05, 0.1], [0.1, 0.2], [0.2, 0.4], [0.4, 0.8], [0.8, 10000]] dor_range_lst = ["0"] + [ str(dor_value_range_lst[i][0]) + "-" + str(dor_value_range_lst[i][1]) for i in range(1, len(dor_value_range_lst) - 1) ] + [">" + str(dor_value_range_lst[-1][0])] # add a column to represent the dam_num range for the df dam_num_value_range_lst = [[0, 0], [0, 1], [1, 3], [3, 5], [5, 10], [10, 20], [20, 50], [50, 10000]] dam_num_range_lst = ["0", "1"] + [ str(dam_num_value_range_lst[i][0]) + "-" + str(dam_num_value_range_lst[i][1]) for i in range(2, len(dam_num_value_range_lst) - 1) ] + [">" + str(dam_num_value_range_lst[-1][0])] def in_which_range(value_temp): if value_temp == 0: return "0" the_range = [ a_range for a_range in dor_value_range_lst if a_range[0] < value_temp <= a_range[1] ] if the_range[0][0] == dor_value_range_lst[-1][0]: the_range_str = ">" + str(the_range[0][0]) else: the_range_str = str(the_range[0][0]) + "-" + str( the_range[0][1]) return the_range_str def in_which_dam_num_range(value_tmp): if value_tmp == 0: return "0" if value_tmp == 1: return "1" the_ran = [ a_ran for a_ran in dam_num_value_range_lst if a_ran[0] < value_tmp <= a_ran[1] ] if the_ran[0][0] == dam_num_value_range_lst[-1][0]: the_ran_str = ">" + str(the_ran[0][0]) else: the_ran_str = str(the_ran[0][0]) + "-" + str(the_ran[0][1]) return the_ran_str df["DOR_RANGE"] = df["DOR"].apply(in_which_range) df["DAM_NUM_RANGE"] = df["DAM_NUM"].apply(in_which_dam_num_range) df.loc[(df["DAM_NUM"] > 0) & (df["DOR_RANGE"] == "0"), "DOR_RANGE"] = dor_range_lst[1] shown_nse_range_boxplots = [-0.5, 1.0] sns.set(font="serif", font_scale=1.5, color_codes=True) plot_boxs(df, "DOR_RANGE", show_ind_key, ylim=shown_nse_range_boxplots, order=dor_range_lst) plt.savefig(os.path.join( config_data.data_path["Out"], 'NSE~DOR-boxplots-' + str(shown_nse_range_boxplots) + '.png'), dpi=figure_dpi, bbox_inches="tight") plt.figure() shown_nse_range_boxplots = [0, 1.0] sns.set(font="serif", font_scale=1.5, color_codes=True) plot_boxs(df, "DAM_NUM_RANGE", show_ind_key, ylim=shown_nse_range_boxplots, order=dam_num_range_lst) plt.savefig(os.path.join( config_data.data_path["Out"], 'NSE~DAM_NUM-boxplots-' + str(shown_nse_range_boxplots) + '.png'), dpi=figure_dpi, bbox_inches="tight") nums_in_dor_range = [ df[df["DOR_RANGE"] == a_range_rmp].shape[0] for a_range_rmp in dor_range_lst ] ratios_in_dor_range = [ a_num / df.shape[0] for a_num in nums_in_dor_range ] hydro_logger.info( "the number and ratio of basins in each dor range\n: %s \n %s", nums_in_dor_range, ratios_in_dor_range) nums_in_dam_num_range = [ df[df["DAM_NUM_RANGE"] == a_range_rmp].shape[0] for a_range_rmp in dam_num_range_lst ] ratios_in_dam_num_range = [ a_num / df.shape[0] for a_num in nums_in_dam_num_range ] hydro_logger.info( "the number and ratio of basins in each dam_num range\n: %s \n %s", nums_in_dam_num_range, ratios_in_dam_num_range) # regplot plt.figure() sns.set(font="serif", font_scale=1.5, color_codes=True) sr = sns.regplot(x="DOR", y=show_ind_key, data=df[df[show_ind_key] >= 0], scatter_kws={'s': 10}) show_dor_max = df.quantile( q=0.95)["DOR"] # 30 # max(dors) # 0.8 # 10 show_dor_min = min(dors) plt.ylim(0, 1) plt.xlim(show_dor_min, show_dor_max) plt.savefig(os.path.join( config_data.data_path["Out"], 'NSE~DOR-shown-max-' + str(show_dor_max) + '.png'), dpi=figure_dpi, bbox_inches="tight") # jointplot # dor_range = [0.2, 0.9] dor_range = [0.002, 0.2] # plt.figure() sns.set(font="serif", font_scale=1.5, color_codes=True) # g = sns.jointplot(x="DOR", y=show_ind_key, data=df[(df["DOR"] < 1) & (df[show_ind_key] >= 0)], kind="reg", # marginal_kws=dict(bins=25)) # g = sns.jointplot(x="DOR", y=show_ind_key, data=df[(df["DOR"] < 1) & (df[show_ind_key] >= 0)], kind="hex", # color="b", marginal_kws=dict(bins=50)) g = sns.jointplot( x="DOR", y=show_ind_key, data=df[(df["DOR"] < dor_range[1]) & (df["DOR"] > dor_range[0]) & (df[show_ind_key] >= 0)], kind="hex", color="b") g.ax_marg_x.set_xlim(dor_range[0], dor_range[1]) # g.ax_marg_y.set_ylim(-0.5, 1) plt.savefig(os.path.join( config_data.data_path["Out"], 'NSE~DOR(range-)' + str(dor_range) + '-jointplot.png'), dpi=figure_dpi, bbox_inches="tight") nid_dir = os.path.join( "/".join(self.config_data.data_path["DB"].split("/")[:-1]), "nid", "test") nid_input = NidModel.load_nidmodel( nid_dir, nid_source_file_name='nid_source.txt', nid_data_file_name='nid_data.shp') gage_main_dam_purpose = unserialize_json( os.path.join(nid_dir, "dam_main_purpose_dict.json")) data_input = GagesDamDataModel(data_model, nid_input, gage_main_dam_purpose) dam_coords = unserialize_json_ordered( os.path.join(nid_dir, "dam_points_dict.json")) dam_storages = unserialize_json_ordered( os.path.join(nid_dir, "dam_storages_dict.json")) dam_ids_1 = list(gage_main_dam_purpose.keys()) dam_ids_2 = list(dam_coords.keys()) dam_ids_3 = list(dam_storages.keys()) assert (all(x < y for x, y in zip(dam_ids_1, dam_ids_1[1:]))) assert (all(x < y for x, y in zip(dam_ids_2, dam_ids_2[1:]))) assert (all(x < y for x, y in zip(dam_ids_3, dam_ids_3[1:]))) sites = list(dam_coords.keys()) c, ind1, idx_lst_nse_range = np.intersect1d(sites, gages_id, return_indices=True) std_storage_in_a_basin = list(map(np.std, dam_storages.values())) log_std_storage_in_a_basin = list( map(np.log, np.array(std_storage_in_a_basin) + 1)) nse_values = self.inds_df["NSE"].values[idx_lst_nse_range] df = pd.DataFrame({ "DAM_STORAGE_STD": log_std_storage_in_a_basin, show_ind_key: nse_values }) plt.figure() sns.set(font="serif", font_scale=1.5, color_codes=True) g = sns.regplot(x="DAM_STORAGE_STD", y=show_ind_key, data=df[df[show_ind_key] >= 0], scatter_kws={'s': 10}) show_max = max(log_std_storage_in_a_basin) show_min = min(log_std_storage_in_a_basin) if show_min < 0: show_min = 0 # g.ax_marg_x.set_xlim(show_min, show_max) # g.ax_marg_y.set_ylim(0, 1) plt.ylim(0, 1) plt.xlim(show_min, show_max) plt.savefig(os.path.join(config_data.data_path["Out"], 'NSE~' + "DAM_STORAGE_STD" + '.png'), dpi=figure_dpi, bbox_inches="tight") gages_loc_lat = data_model.data_source.gage_dict["LAT_GAGE"] gages_loc_lon = data_model.data_source.gage_dict["LNG_GAGE"] gages_loc = [[gages_loc_lat[i], gages_loc_lon[i]] for i in range(len(gages_id))] # calculate index of dispersion, then plot the NSE-dispersion scatterplot # Geo coord system of gages_loc and dam_coords are both NAD83 coefficient_of_var = list( map(coefficient_of_variation, gages_loc, dam_coords.values())) coefficient_of_var_min = min(coefficient_of_var) coefficient_of_var_max = max(coefficient_of_var) dispersion_var = "DAM_GAGE_DIS_VAR" nse_values = self.inds_df["NSE"].values[idx_lst_nse_range] df = pd.DataFrame({ dispersion_var: coefficient_of_var, show_ind_key: nse_values }) plt.figure() sns.set(font="serif", font_scale=1.5, color_codes=True) g = sns.regplot(x=dispersion_var, y=show_ind_key, data=df[df[show_ind_key] >= 0], scatter_kws={'s': 10}) show_max = coefficient_of_var_max show_min = coefficient_of_var_min if show_min < 0: show_min = 0 # g.ax_marg_x.set_xlim(show_min, show_max) # g.ax_marg_y.set_ylim(0, 1) plt.ylim(0, 1) plt.xlim(show_min, show_max) plt.savefig(os.path.join(config_data.data_path["Out"], 'NSE~' + dispersion_var + '.png'), dpi=figure_dpi, bbox_inches="tight") idx_dispersions = list( map(ind_of_dispersion, gages_loc, dam_coords.values())) idx_dispersion_min = min(idx_dispersions) idx_dispersion_max = max(idx_dispersions) dispersion_var = "DAM_DISPERSION_BASIN" # nse_range = [0, 1] # idx_lst_nse_range = inds_df_now[(inds_df_now[show_ind_key] >= nse_range[0]) & (inds_df_now[show_ind_key] < nse_range[1])].index.tolist() nse_values = self.inds_df["NSE"].values[idx_lst_nse_range] df = pd.DataFrame({ dispersion_var: idx_dispersions, show_ind_key: nse_values }) # g = sns.regplot(x=dispersion_var, y=show_ind_key, data=df[df[show_ind_key] >= 0], scatter_kws={'s': 10}) if idx_dispersion_min < 0: idx_dispersion_min = 0 plt.ylim(0, 1) plt.xlim(idx_dispersion_min, idx_dispersion_max) # plt.figure() sns.set(font="serif", font_scale=1.5, color_codes=True) g = sns.jointplot(x=dispersion_var, y=show_ind_key, data=df[df[show_ind_key] >= 0], kind="reg") g.ax_marg_x.set_xlim(idx_dispersion_min, idx_dispersion_max) g.ax_marg_y.set_ylim(0, 1) plt.show()
def test_stor_seperate(self): config_dir = definitions.CONFIG_DIR config_file = os.path.join(config_dir, "basic/config_exp18.ini") subdir = r"basic/exp18" config_data = GagesConfig.set_subdir(config_file, subdir) data_model = GagesModel.load_datamodel( config_data.data_path["Temp"], data_source_file_name='test_data_source.txt', stat_file_name='test_Statistics.json', flow_file_name='test_flow.npy', forcing_file_name='test_forcing.npy', attr_file_name='test_attr.npy', f_dict_file_name='test_dictFactorize.json', var_dict_file_name='test_dictAttribute.json', t_s_dict_file_name='test_dictTimeSpace.json') all_sites = data_model.t_s_dict["sites_id"] storage_nor_1 = [0, 50] storage_nor_2 = [50, 15000] # max is 14348.6581036888 source_data_nor1 = GagesSource.choose_some_basins( config_data, config_data.model_dict["data"]["tRangeTrain"], STORAGE=storage_nor_1) source_data_nor2 = GagesSource.choose_some_basins( config_data, config_data.model_dict["data"]["tRangeTrain"], STORAGE=storage_nor_2) sites_id_nor1 = source_data_nor1.all_configs['flow_screen_gage_id'] sites_id_nor2 = source_data_nor2.all_configs['flow_screen_gage_id'] idx_lst_nor1 = [ i for i in range(len(all_sites)) if all_sites[i] in sites_id_nor1 ] idx_lst_nor2 = [ i for i in range(len(all_sites)) if all_sites[i] in sites_id_nor2 ] pred, obs = load_result( data_model.data_source.data_config.data_path['Temp'], self.test_epoch) pred = pred.reshape(pred.shape[0], pred.shape[1]) obs = obs.reshape(pred.shape[0], pred.shape[1]) inds = statError(obs, pred) inds_df = pd.DataFrame(inds) keys_nse = "NSE" xs = [] ys = [] cases_exps_legends_together = ["small_stor", "large_stor"] x1, y1 = ecdf(inds_df[keys_nse].iloc[idx_lst_nor1]) xs.append(x1) ys.append(y1) x2, y2 = ecdf(inds_df[keys_nse].iloc[idx_lst_nor2]) xs.append(x2) ys.append(y2) cases_exps = ["dam_exp12", "dam_exp11"] cases_exps_legends_separate = ["small_stor", "large_stor"] # cases_exps = ["dam_exp4", "dam_exp5", "dam_exp6"] # cases_exps = ["dam_exp1", "dam_exp2", "dam_exp3"] # cases_exps_legends = ["dam-lstm", "dam-with-natural-flow", "dam-with-kernel"] for case_exp in cases_exps: config_data_i = load_dataconfig_case_exp(case_exp) pred_i, obs_i = load_result(config_data_i.data_path['Temp'], self.test_epoch) pred_i = pred_i.reshape(pred_i.shape[0], pred_i.shape[1]) obs_i = obs_i.reshape(obs_i.shape[0], obs_i.shape[1]) inds_i = statError(obs_i, pred_i) x, y = ecdf(inds_i[keys_nse]) xs.append(x) ys.append(y) plot_ecdfs(xs, ys, cases_exps_legends_together + cases_exps_legends_separate, style=["together", "together", "separate", "separate"])
idx_lst_diversion_smalldor = [ i for i in range(len(all_sites)) if all_sites[i] in diversion_small_dor ] idx_lst_diversion_largedor = [ i for i in range(len(all_sites)) if all_sites[i] in diversion_large_dor ] keys_nse = "NSE" xs = [] ys = [] cases_exps_legends_together = [ "not_diverted_small_dor", "not_diverted_large_dor", "diversion_small_dor", "diversion_large_dor", "CONUS" ] x1, y1 = ecdf(inds_df[keys_nse].iloc[idx_lst_nodivert_smalldor]) xs.append(x1) ys.append(y1) x2, y2 = ecdf(inds_df[keys_nse].iloc[idx_lst_nodivert_largedor]) xs.append(x2) ys.append(y2) x3, y3 = ecdf(inds_df[keys_nse].iloc[idx_lst_diversion_smalldor]) xs.append(x3) ys.append(y3) x4, y4 = ecdf(inds_df[keys_nse].iloc[idx_lst_diversion_largedor]) xs.append(x4) ys.append(y4)