def viterbi_path(self): init = np.array([eln(val) for val in np.nditer(self.init)]) trans = np.array([[eln(v) for v in np.nditer(axis)] for axis in np.nditer(self.trans)]).reshape(self.n_states, self.n_states) print(np.array([[eln(v) for v in np.nditer(axis)] for axis in np.nditer(self.emis)])) emis = np.array([[eln(v) for v in np.nditer(axis)] for axis in np.nditer(self.emis)]).reshape(self.emis.shape[1], self.emis.shape[0]) best_states = [] logprob = init for k in range(0, self.n_obs): trans_p = np.zeros([self.n_states, self.n_states]) for i in range(self.n_states): for j in range(self.n_states): trans_p[i, j] = elnsum(logprob[i], elnproduct(trans[i, j], emis[i, self.obs[k-1]])) # Get the indices of the max probs that give the best prior states. best_states.append(np.argmax(trans_p, axis=0)) logprob = np.max(trans_p, axis=0) print(len(best_states)) # Most likely final state. final_state = np.argmax(logprob) print(final_state) # Reconstruct path by backtracking through likeliest states. prior_state = final_state best_path = [prior_state + 1] for best in reversed(best_states): prior_state = best[prior_state] best_path.append(prior_state + 1) return list(reversed(best_path)), logprob[final_state]
def _backward_iter_eln(self): elnbeta = np.zeros((self.n_states, self.n_obs + 1)) # base case elnbeta[:, -1] = 0 # recursive case for k in range(self.n_obs, 0, -1): for i in range(self.n_states): beta = -np.inf for j in range(self.n_states): beta = elnsum( beta, elnproduct( eln(self.trans.transpose()[i, j]), elnproduct(eln(self.emis[self.obs[k - 1], j]), elnbeta[j, k]))) elnbeta[i, k - 1] = beta return elnbeta
def _forward_iter_eln(self): elnalpha = np.zeros((self.n_states, self.n_obs + 1)) # base case elnalpha[:, 0] = [eln(x) for x in self.init] # recursive case for k in range(1, self.n_obs + 1): for j in range(self.n_states): logalpha = -np.inf for i in range(self.n_states): logalpha = elnsum( logalpha, elnproduct(elnalpha[i, k - 1], eln(self.trans.transpose()[i, j]))) elnalpha[j, k] = elnproduct(logalpha, eln(self.emis[self.obs[k - 1], j])) return elnalpha
def _backward_iter_eln(self): logbetas = np.zeros((self.n_states, self.n_obs + 1)) # base case logbetas[:, -1] = 0 print(logbetas.transpose) # recursive case for k in range(self.n_obs, 0, -1): for i in range(self.n_states): logbeta = -np.inf for j in range(self.n_states): logbeta = elnsum( logbeta, elnproduct( eln(self.trans.transpose()[i, j]), elnproduct(eln(self.emis[self.obs[k - 1], j]), logbetas[j, k]))) logbetas[i, k - 1] = logbeta return logbetas
def _eln_xi(self, elnalpha, elnbeta, obs_seq): elnxi = np.zeros((self.n_states, self.n_states, len(obs_seq))) for k in range(len(obs_seq) - 1, -1, -1): normalizer = -np.inf for i in range(self.n_states): for j in range(self.n_states): elnxi[i, j, k - 1] = elnproduct( elnalpha[i, k - 1], elnproduct( eln(self.trans.transpose()[i, j]), elnproduct(eln(self.emis[obs_seq[k] - 1, j]), elnbeta[j, k]))) normalizer = elnsum(normalizer, elnxi[i, j, k - 1]) for i in range(self.n_states): for j in range(self.n_states): elnxi[i, j, k - 1] = elnproduct(elnxi[i, j, k - 1], -normalizer) return elnxi
def _eln_xi(self, elnalpha, elnbeta, obs_seq): """ This function calculates P(S_i_t, S_j_t+1) i.e. the probability of being in state S_i at time t and state S_j at time t+1. """ elnxi = np.zeros((self.n_states, self.n_states, len(obs_seq) - 1)) xi = np.zeros((self.n_states, self.n_states, len(obs_seq) - 1)) for k in range(len(obs_seq) - 1): normalizer = -np.inf for i in range(self.n_states): for j in range(self.n_states): elnxi[i, j, k] = elnproduct( elnalpha[i, k], elnproduct( eln(self.trans.transpose()[i, j]), elnproduct(eln(self.emis[obs_seq[k + 1], j]), elnbeta[j, k + 1]))) normalizer = elnsum(normalizer, elnxi[i, j, k]) for i in range(self.n_states): for j in range(self.n_states): elnxi[i, j, k] = elnproduct(elnxi[i, j, k], -normalizer) xi[i, j, k] = eexp(elnxi[i, j, k]) return elnxi, xi
def data_likelihood(): fbhmm = ForwardBackwardHMM(pxk_xkm1, pyk_xk, px0, y_obs_long) probs, alphas, betas = fbhmm.forward_backward() print(eln(sum(alphas[:, len(y_obs_long)])))