Beispiel #1
0
import sys, os
sys.path.append(os.path.abspath('..\\..\\ezmodel'))

from ezmodel.ezmodel import ezmodel
from ezmodel.ezdata import ezdata
from ezmodel.eztrainer import eztrainer

# [EZDATA]
parameters = {
    "name": "Skin to predict",
    "path": "C:\\Users\\daian\\Desktop\\DATA\\Skin\\skin_to_predict.npz",
    "resize": (128, 128)
}
data_to_predict = ezdata(parameters)

# [EZNETWORK]
ez_trainer = eztrainer(network="imagenet.mobilenet")

# [EZMODEL]

ez_model = ezmodel()
ez_model.assign(data_to_predict, ez_trainer)

ez_model.predict(data_to_predict)
Beispiel #2
0
# ----------------------------  [EZ Data]  -----------------------------------
# Table Classification from a csv file:
# - One subdirectory by Class
parameters = {
    "name": "Iris",
    "type": "classification",
    "format": "table",
    "from": "file",
    "path": "C:\\Users\\daian\\Desktop\\DATA\\Iris\\iris.csv",
    "table_delimiter": ",",
    "table_target_column": ["species"],
    "table_target_column_type": "string"
}

ez_data = ezdata(parameters)

ez_data.gen_test(size=0.2)

ez_data.preprocess(X="standard",
                   y="categorical")  #on crée les scaler dans ez_data aussi

# ----------------------------  [EZ Data Save]  -------------------------------

ez_data.save("iris_dataset")

# ----------------------------  [EZ Data Load]  -------------------------------

ez_data2 = ezdata(load="iris_dataset")

print(ez_data2.params["name"])
Beispiel #3
0
from ezmodel.eztrainer import eztrainer

# ----------------------------  [EZ Data]  -----------------------------------
# Load from a npz file containing data
# NPZ file should contains 3 keys:
# X key containing data
# y key containing label
# synsets key in case of classification model with synset generated
parameters = {
    "name"        : "Skin",
    "path"        : "C:\\Users\\daian\\Desktop\\DATA\\Skin\\skin.npz",
    "X.key"       : "images",
    "y.key"       : "labels"
}

ez_data = ezdata(parameters)

ez_data.gen_test(0.2)

#ez_data.preprocess(X="mobilenet",y="categorical")
ez_data.preprocess(X="vgg19",y="categorical")


# --------------------------  [EZ Trainer] ------------------------------------
from keras.layers import Dense,Dropout

ez_trainer = eztrainer()

ez_trainer.gen_trainval(ez_data,size=0.2)

#  -- Keras network --
Beispiel #4
0
import sys, os
sys.path.append(os.path.abspath('..\\..\\ezmodel'))

from ezmodel.ezmodel import ezmodel
from ezmodel.ezdata import ezdata
from ezmodel.eztrainer import eztrainer

ezd = ezdata()
ezd.X = ezd.image_from_url(
    url=
    "https://www.almanac.com/sites/default/files/styles/primary_image_in_article/public/image_nodes/strawberries-1.jpg",
    img_size=(128, 128))
ezd.y = None

import pickle
from urllib.request import urlopen
ezd.synsets = pickle.load(
    urlopen(
        'https://gist.githubusercontent.com/yrevar/6135f1bd8dcf2e0cc683/raw/d133d61a09d7e5a3b36b8c111a8dd5c4b5d560ee/imagenet1000_clsid_to_human.pkl'
    ))

ezt = eztrainer()
ezt.network = ezt.PretrainedNetwork("mobilenet", ezd.X.shape[1:])
ezt.network.summary()

ezd.preprocess(X="mobilenet", y=None)

import numpy as np
p = ezt.network.predict(ezd.X)
top = 5
ind_five = (-p).argsort()[-3:][::-1][0][0:top]