Beispiel #1
0
    def __init__(self, **kwargs):
        # kwargs extraction
        try:
            self.seed = kwargs['seed']
        except:
            self.seed = 12345
        try:
            self.map_name = kwargs['map']
            # different default maps
            if self.map_name == 'berlin':
                self.map_path = os.path.dirname(
                    os.path.abspath(__file__)) + '/maps/berlin.yaml'
            elif self.map_name == 'skirk':
                self.map_path = os.path.dirname(
                    os.path.abspath(__file__)) + '/maps/skirk.yaml'
            elif self.map_name == 'levine':
                self.map_path = os.path.dirname(
                    os.path.abspath(__file__)) + '/maps/levine.yaml'
            else:
                self.map_path = self.map_name + '.yaml'
        except:
            self.map_path = os.path.dirname(
                os.path.abspath(__file__)) + '/maps/vegas.yaml'

        try:
            self.map_ext = kwargs['map_ext']
        except:
            self.map_ext = '.png'

        try:
            self.params = kwargs['params']
        except:
            self.params = {
                'mu': 1.0489,
                'C_Sf': 4.718,
                'C_Sr': 5.4562,
                'lf': 0.15875,
                'lr': 0.17145,
                'h': 0.074,
                'm': 3.74,
                'I': 0.04712,
                's_min': -0.4189,
                's_max': 0.4189,
                'sv_min': -3.2,
                'sv_max': 3.2,
                'v_switch': 7.319,
                'a_max': 9.51,
                'v_min': -5.0,
                'v_max': 20.0,
                'width': 0.31,
                'length': 0.58
            }

        # simulation parameters
        try:
            self.num_agents = kwargs['num_agents']
        except:
            self.num_agents = 2

        try:
            self.timestep = kwargs['timestep']
        except:
            self.timestep = 0.01

        # default ego index
        try:
            self.ego_idx = kwargs['ego_idx']
        except:
            self.ego_idx = 0

        # radius to consider done
        self.start_thresh = 0.5  # 10cm

        # env states
        self.poses_x = []
        self.poses_y = []
        self.poses_theta = []
        self.collisions = np.zeros((self.num_agents, ))
        # TODO: collision_idx not used yet
        # self.collision_idx = -1 * np.ones((self.num_agents, ))

        # loop completion
        self.near_start = True
        self.num_toggles = 0

        # race info
        self.lap_times = np.zeros((self.num_agents, ))
        self.lap_counts = np.zeros((self.num_agents, ))
        self.current_time = 0.0

        # finish line info
        self.num_toggles = 0
        self.near_start = True
        self.near_starts = np.array([True] * self.num_agents)
        self.toggle_list = np.zeros((self.num_agents, ))
        self.start_xs = np.zeros((self.num_agents, ))
        self.start_ys = np.zeros((self.num_agents, ))
        self.start_thetas = np.zeros((self.num_agents, ))
        self.start_rot = np.eye(2)

        # initiate stuff
        self.sim = Simulator(self.params, self.num_agents, self.seed)
        self.sim.set_map(self.map_path, self.map_ext)

        # rendering
        self.renderer = None
        self.current_obs = None
Beispiel #2
0
class F110Env(gym.Env, utils.EzPickle):
    """
    OpenAI gym environment for F1TENTH
    
    Env should be initialized by calling gym.make('f110_gym:f110-v0', **kwargs)

    Args:
        kwargs:
            seed (int, default=12345): seed for random state and reproducibility
            
            map (str, default='vegas'): name of the map used for the environment. Currently, available environments include: 'berlin', 'vegas', 'skirk'. You could use a string of the absolute path to the yaml file of your custom map.
        
            map_ext (str, default='png'): image extension of the map image file. For example 'png', 'pgm'
        
            params (dict, default={'mu': 1.0489, 'C_Sf':, 'C_Sr':, 'lf': 0.15875, 'lr': 0.17145, 'h': 0.074, 'm': 3.74, 'I': 0.04712, 's_min': -0.4189, 's_max': 0.4189, 'sv_min': -3.2, 'sv_max': 3.2, 'v_switch':7.319, 'a_max': 9.51, 'v_min':-5.0, 'v_max': 20.0, 'width': 0.31, 'length': 0.58}): dictionary of vehicle parameters.
            mu: surface friction coefficient
            C_Sf: Cornering stiffness coefficient, front
            C_Sr: Cornering stiffness coefficient, rear
            lf: Distance from center of gravity to front axle
            lr: Distance from center of gravity to rear axle
            h: Height of center of gravity
            m: Total mass of the vehicle
            I: Moment of inertial of the entire vehicle about the z axis
            s_min: Minimum steering angle constraint
            s_max: Maximum steering angle constraint
            sv_min: Minimum steering velocity constraint
            sv_max: Maximum steering velocity constraint
            v_switch: Switching velocity (velocity at which the acceleration is no longer able to create wheel spin)
            a_max: Maximum longitudinal acceleration
            v_min: Minimum longitudinal velocity
            v_max: Maximum longitudinal velocity
            width: width of the vehicle in meters
            length: length of the vehicle in meters

            num_agents (int, default=2): number of agents in the environment

            timestep (float, default=0.01): physics timestep

            ego_idx (int, default=0): ego's index in list of agents
    """
    metadata = {'render.modes': ['human', 'human_fast']}

    def __init__(self, **kwargs):
        # kwargs extraction
        try:
            self.seed = kwargs['seed']
        except:
            self.seed = 12345
        try:
            self.map_name = kwargs['map']
            # different default maps
            if self.map_name == 'berlin':
                self.map_path = os.path.dirname(
                    os.path.abspath(__file__)) + '/maps/berlin.yaml'
            elif self.map_name == 'skirk':
                self.map_path = os.path.dirname(
                    os.path.abspath(__file__)) + '/maps/skirk.yaml'
            elif self.map_name == 'levine':
                self.map_path = os.path.dirname(
                    os.path.abspath(__file__)) + '/maps/levine.yaml'
            else:
                self.map_path = self.map_name + '.yaml'
        except:
            self.map_path = os.path.dirname(
                os.path.abspath(__file__)) + '/maps/vegas.yaml'

        try:
            self.map_ext = kwargs['map_ext']
        except:
            self.map_ext = '.png'

        try:
            self.params = kwargs['params']
        except:
            self.params = {
                'mu': 1.0489,
                'C_Sf': 4.718,
                'C_Sr': 5.4562,
                'lf': 0.15875,
                'lr': 0.17145,
                'h': 0.074,
                'm': 3.74,
                'I': 0.04712,
                's_min': -0.4189,
                's_max': 0.4189,
                'sv_min': -3.2,
                'sv_max': 3.2,
                'v_switch': 7.319,
                'a_max': 9.51,
                'v_min': -5.0,
                'v_max': 20.0,
                'width': 0.31,
                'length': 0.58
            }

        # simulation parameters
        try:
            self.num_agents = kwargs['num_agents']
        except:
            self.num_agents = 2

        try:
            self.timestep = kwargs['timestep']
        except:
            self.timestep = 0.01

        # default ego index
        try:
            self.ego_idx = kwargs['ego_idx']
        except:
            self.ego_idx = 0

        # radius to consider done
        self.start_thresh = 0.5  # 10cm

        # env states
        self.poses_x = []
        self.poses_y = []
        self.poses_theta = []
        self.collisions = np.zeros((self.num_agents, ))
        # TODO: collision_idx not used yet
        # self.collision_idx = -1 * np.ones((self.num_agents, ))

        # loop completion
        self.near_start = True
        self.num_toggles = 0

        # race info
        self.lap_times = np.zeros((self.num_agents, ))
        self.lap_counts = np.zeros((self.num_agents, ))
        self.current_time = 0.0

        # finish line info
        self.num_toggles = 0
        self.near_start = True
        self.near_starts = np.array([True] * self.num_agents)
        self.toggle_list = np.zeros((self.num_agents, ))
        self.start_xs = np.zeros((self.num_agents, ))
        self.start_ys = np.zeros((self.num_agents, ))
        self.start_thetas = np.zeros((self.num_agents, ))
        self.start_rot = np.eye(2)

        # initiate stuff
        self.sim = Simulator(self.params, self.num_agents, self.seed)
        self.sim.set_map(self.map_path, self.map_ext)

        # rendering
        self.renderer = None
        self.current_obs = None

    def __del__(self):
        """
        Finalizer, does cleanup
        """
        pass

    def _check_done(self):
        """
        Check if the current rollout is done
        
        Args:
            None

        Returns:
            done (bool): whether the rollout is done
            toggle_list (list[int]): each agent's toggle list for crossing the finish zone
        """

        # this is assuming 2 agents
        # TODO: switch to maybe s-based
        left_t = 2
        right_t = 2

        poses_x = np.array(self.poses_x) - self.start_xs
        poses_y = np.array(self.poses_y) - self.start_ys
        delta_pt = np.dot(self.start_rot, np.stack((poses_x, poses_y), axis=0))
        temp_y = delta_pt[1, :]
        idx1 = temp_y > left_t
        idx2 = temp_y < -right_t
        temp_y[idx1] -= left_t
        temp_y[idx2] = -right_t - temp_y[idx2]
        temp_y[np.invert(np.logical_or(idx1, idx2))] = 0

        dist2 = delta_pt[0, :]**2 + temp_y**2
        closes = dist2 <= 0.1
        for i in range(self.num_agents):
            if closes[i] and not self.near_starts[i]:
                self.near_starts[i] = True
                self.toggle_list[i] += 1
            elif not closes[i] and self.near_starts[i]:
                self.near_starts[i] = False
                self.toggle_list[i] += 1
            self.lap_counts[i] = self.toggle_list[i] // 2
            if self.toggle_list[i] < 4:
                self.lap_times[i] = self.current_time

        done = (self.collisions[self.ego_idx]) or np.all(self.toggle_list >= 4)

        return done, self.toggle_list >= 4

    def _update_state(self, obs_dict):
        """
        Update the env's states according to observations
        
        Args:
            obs_dict (dict): dictionary of observation

        Returns:
            None
        """
        self.poses_x = obs_dict['poses_x']
        self.poses_y = obs_dict['poses_y']
        self.poses_theta = obs_dict['poses_theta']
        self.collisions = obs_dict['collisions']

    def step(self, action):
        """
        Step function for the gym env

        Args:
            action (np.ndarray(num_agents, 2))

        Returns:
            obs (dict): observation of the current step
            reward (float, default=self.timestep): step reward, currently is physics timestep
            done (bool): if the simulation is done
            info (dict): auxillary information dictionary
        """

        # call simulation step
        obs = self.sim.step(action)
        obs['lap_times'] = self.lap_times
        obs['lap_counts'] = self.lap_counts

        self.current_obs = obs

        # times
        reward = self.timestep
        self.current_time = self.current_time + self.timestep

        # update data member
        self._update_state(obs)

        # check done
        done, toggle_list = self._check_done()
        info = {'checkpoint_done': toggle_list}

        return obs, reward, done, info

    def reset(self, poses):
        """
        Reset the gym environment by given poses

        Args:
            poses (np.ndarray (num_agents, 3)): poses to reset agents to

        Returns:
            obs (dict): observation of the current step
            reward (float, default=self.timestep): step reward, currently is physics timestep
            done (bool): if the simulation is done
            info (dict): auxillary information dictionary
        """
        # reset counters and data members
        self.current_time = 0.0
        self.collisions = np.zeros((self.num_agents, ))
        self.num_toggles = 0
        self.near_start = True
        self.near_starts = np.array([True] * self.num_agents)
        self.toggle_list = np.zeros((self.num_agents, ))

        # states after reset
        self.start_xs = poses[:, 0]
        self.start_ys = poses[:, 1]
        self.start_thetas = poses[:, 2]
        self.start_rot = np.array(
            [[
                np.cos(-self.start_thetas[self.ego_idx]),
                -np.sin(-self.start_thetas[self.ego_idx])
            ],
             [
                 np.sin(-self.start_thetas[self.ego_idx]),
                 np.cos(-self.start_thetas[self.ego_idx])
             ]])

        # call reset to simulator
        self.sim.reset(poses)

        # get no input observations
        action = np.zeros((self.num_agents, 2))
        obs, reward, done, info = self.step(action)
        return obs, reward, done, info

    def update_map(self, map_path, map_ext):
        """
        Updates the map used by simulation

        Args:
            map_path (str): absolute path to the map yaml file
            map_ext (str): extension of the map image file

        Returns:
            None
        """
        self.sim.set_map(map_path, map_ext)

    def update_params(self, params, index=-1):
        """
        Updates the parameters used by simulation for vehicles
        
        Args:
            params (dict): dictionary of parameters
            index (int, default=-1): if >= 0 then only update a specific agent's params

        Returns:
            None
        """
        self.sim.update_params(params, agent_idx=index)

    def render(self, mode='human'):
        """
        Renders the environment with pyglet. Use mouse scroll in the window to zoom in/out, use mouse click drag to pan. Shows the agents, the map, current fps (bottom left corner), and the race information near as text.

        Args:
            mode (str, default='human'): rendering mode, currently supports:
                'human': slowed down rendering such that the env is rendered in a way that sim time elapsed is close to real time elapsed
                'human_fast': render as fast as possible

        Returns:
            None
        """
        assert mode in ['human', 'human_fast']
        if self.renderer is None:
            # first call, initialize everything
            from f110_gym.envs.rendering import EnvRenderer
            self.renderer = EnvRenderer(WINDOW_W, WINDOW_H)
            self.renderer.update_map(self.map_name, self.map_ext)
        self.renderer.update_obs(self.current_obs)
        self.renderer.dispatch_events()
        self.renderer.on_draw()
        self.renderer.flip()
        if mode == 'human':
            time.sleep(0.005)
        elif mode == 'human_fast':
            pass