Beispiel #1
0
    def __init__(self,
            historical=None,
            balance_sheet=None,
            income_statement=None,
            cash_flow=None,
            financial_report_preparation_lag=np.timedelta64(30, 'D')
        ):
        """ Returns an object that is capable of calculating various metrics of the stock.
            historical, balance_sheet, income_statement, cash_flow: respective DataFrame objects, default: None
            financial_report_preparation_lag (np.timedelta64 object):
                how long does it take to release the financial report after the end of fiscal year?
                default: 30 days.
        """
        self.historical = historical
        self.balance_sheet = balance_sheet
        self.income_statement = income_statement
        self.cash_flow = cash_flow
        self.financial_report_preparation_lag = financial_report_preparation_lag

        if historical is not None:
            # historical data with missing dates filled in, with values from future
            self.historical_fillforward = historical.resample('1D', fill_method="ffill")

            # historical data with missing dates filled in, with values from past
            self.historical_fillbackward = historical.resample('1D', fill_method="bfill")

        # financial reports with the lag in information release factored in
        if balance_sheet is not None:
            self.balance_sheet_lagged = translate_index(balance_sheet, self.financial_report_preparation_lag)

        if income_statement is not None:
            self.income_statement_lagged = translate_index(income_statement, self.financial_report_preparation_lag)

        if cash_flow is not None:
            self.cash_flow_lagged = translate_index(cash_flow, self.financial_report_preparation_lag)
Beispiel #2
0
 def test_translate_index(self):
     result = calculator.translate_index(pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]}), 3)
     self.assertFrameEqual(result, pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]}, index=[3, 4, 5]))