Beispiel #1
0
async def detection_loop(preload):
    # =================== FD MODEL ====================
    detector = face_detector.DetectorModel(preload)
    embedding_threshold = preload.embedding_threshold
    rate = preload.max_frame_rate
    loop = asyncio.get_running_loop()

    def retina_deal(pair):
        address, frame = pair
        res = []
        for img, box in detector.get_all_boxes(frame, save_img=False):
            res.append(box.tolist())
            if box[4] > embedding_threshold:
                try:
                    suspicion_face_queue.put_nowait((address, img))
                except:
                    pass

        return (address, frame) if res == [] else (address, res, frame)

    while True:
        start_time = loop.time()
        frame_list = [retina_deal(pair) for pair in frame_queue.get()]
        print(colored(f'Detection cost: {loop.time() - start_time}', 'red'),
              flush=True)
        upstream_queue.put(frame_list)
        for _ in range(int((loop.time() - start_time) * rate)):
            upstream_queue.put(frame_queue.get())
Beispiel #2
0
async def detection_loop(preload):
    # =================== FD MODEL ====================
    detector = face_detector.DetectorModel(preload)
    rate = preload.max_frame_rate
    loop = asyncio.get_running_loop()

    while True:
        start_time = loop.time()
        head_frame_list = frame_queue.get()

        for (ip_address, head_frame) in head_frame_list:
            for img, box in detector.get_all_boxes(head_frame, save_img=False):
                try:
                    suspicion_face_queue.put_nowait((ip_address, img))
                except Exception as e:
                    pass

                box = box.astype(int)
                cv2.rectangle(head_frame, (box[0], box[1]), (box[2], box[3]),
                              [255, 255, 0], 2)

            upstream_queue.put((ip_address, head_frame))

        print(colored(loop.time() - start_time, 'red'), flush=True)

        for i in range(int((loop.time() - start_time) * rate + 1)):
            for item in frame_queue.get():
                upstream_queue.put(item)
async def detection_loop(preload, address):
    # =================== FD MODEL ====================
    detector = face_detector.DetectorModel(preload)
    rate_time = 1 / preload.max_frame_rate
    embedding_threshold = preload.embedding_threshold

    loop = asyncio.get_running_loop()

    camera = ipc.XMIPCamera(address.encode('UTF-8'), 34567, b"admin", b"")
    camera.start()

    while True:
        start_time = loop.time()
        frame = camera.frame(rows=540, cols=960)

        for img, box in detector.get_all_boxes(frame, save_img=False):
            if box[4] > embedding_threshold:
                try:
                    suspicion_face_queue.put_nowait((address, img))
                except Exception as _:
                    pass
            # print(box[4])
                    
            box = box.astype(np.int)
            cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]),
                          [255, 255, 0], 2)

        upstream_queue.put((address, frame))
        # print(colored(loop.time() - start_time, 'red'), flush=True)

        restime = rate_time - loop.time() + start_time
        if restime > 0:
            await asyncio.sleep(restime)
async def detection_loop(preload, frame_queue):
    # =================== FD MODEL ====================
    detector = face_detector.DetectorModel(preload)
    ip_address = preload.ip_address
    loop = asyncio.get_running_loop()

    while True:
        start_time = loop.time()
        head_frame = frame_queue.get()

        # tracker = cv2.MultiTracker_create()
        # t_box = []
        for img, box in detector.get_all_boxes(head_frame, save_img=False):
            try:
                if box[4] > 0.98:
                    suspicion_face_queue.put_nowait(img)
            except Exception as e:
                pass

            box = box.astype(int)
            cv2.rectangle(
                head_frame, (box[0], box[1]), (box[2], box[3]), [255, 255, 0], 2)
        # t_box.append(box[:4]/2)

        print(colored(loop.time()-start_time, 'blue'))
        # head_frame = cv2.resize(head_frame, (960, 540), cv2.INTER_AREA)

        # for item in t_box:
        #     tracker.add(cv2.TrackerMedianFlow_create(), head_frame, tuple(item))
        upstream_frame_queue.put((ip_address, head_frame))

        for i in range(int((loop.time() - start_time) * 25 + 1)):
            body_frame = frame_queue.get()
            # ok, tricker_boxes = tracker.update(body_frame)
            # if ok:
            #     for box in tricker_boxes:
            #         box = box.astype(int)
            #         cv2.rectangle(body_frame, (box[0], box[1]),
            #                       (box[2], box[3]), [255, 255, 0], 2)
            upstream_frame_queue.put((ip_address, body_frame))
            # await sio.emit('frame_data', encode_image(body_frame), namespace='/remilia')

        # end_time = loop.time()
        # print(colored(loop.time()-track_time, 'red'))
        sys.stdout.flush()
async def detection_loop(preload):
    reciprocal_of_max_frame_rate = 1/preload.max_frame_rate
    address = preload.address
    xmcp = ipc.XMIPCamera(address.encode('UTF-8'), 34567, b"admin", b"")
    xmcp.start()

    # =================== FD MODEL ====================
    detector = face_detector.DetectorModel(preload)
    rate = preload.max_frame_rate
    loop = asyncio.get_running_loop()

    predictor = dlib.shape_predictor(preload.face_landmark_path)

    (lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
    (rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]

    # =================== ETERNAL LOOP ====================
    while True:
        start_time = loop.time()

        try:
            head_frame = xmcp.frame(rows=540, cols=960)

            for img, box, points in detector.get_boxes_and_landmarks(head_frame):
                box = box.astype(int)
                # nimg = cv2.resize(
                # head_frame[box[1]:box[3], box[0]:box[2]], (112, 112))
                shape = predictor(img, dlib.rectangle(0, 0, 112, 112))
                # shape = predictor(head_frame, dlib.rectangle(
                #     box[0], box[1], box[2], box[3]))
                # shape = face_utils.shape_to_np(shape) + 50
                shape = face_utils.shape_to_np(shape)
                reprojectdst, euler_angle = get_head_pose(shape)

                # for (x, y) in shape:
                #     cv2.circle(head_frame, (x, y), 2, (0, 0, 255), -1)

                # for start, end in line_pairs:
                #     cv2.line(
                #         head_frame, reprojectdst[start], reprojectdst[end], (0, 0, 255))

                # =================== EYES ====================
                shape = shape * 10

                leftEye = shape[lStart:lEnd]
                rightEye = shape[rStart:rEnd]

                leftEAR = eye_aspect_ratio(leftEye)
                rightEAR = eye_aspect_ratio(rightEye)

                # head_frame = np.zeros([540, 960, 3])

                result_queue.put((euler_angle, shape, leftEAR, rightEAR))
        except Exception as e:
            print(e)
            pass

        print(colored(loop.time()-start_time, 'red'), flush=True)

        restime = reciprocal_of_max_frame_rate - loop.time() + start_time
        if restime > 0:
            await asyncio.sleep(restime)
from sklearn.preprocessing import label_binarize
import imageGenerator
from sklearn import metrics

from helper import read_pkl_model, start_up_init, get_dataset, get_image_paths_and_labels
import face_embedding
import face_detector

# =================== ARGS ====================
os.environ["MXNET_CUDNN_AUTOTUNE_DEFAULT"] = "0"
args = start_up_init()
args.retina_model = './model/M25'
args.scales = [0.5]

# =================== MODEL CLASS ====================
detector = face_detector.DetectorModel(args)
arcface = face_embedding.EmbeddingModel(args)

# =================== LOAD DATASET ====================.
dir_train = './Temp/train.npy'
data_train = './Temp/train_data'
dataset_train = get_dataset(data_train)
paths_train, labels_train = get_image_paths_and_labels(dataset_train)
try:
    train_emb_array = np.load(dir_train)
    train_emb_array = imageGenerator.generator()
except OSError:
    if not os.path.exists('./Temp/raw/'):
        os.makedirs('./Temp/raw/')
    detector.get_all_boxes_from_path(paths_train, save_img=True)
    dataset_train = get_dataset(data_train)