Beispiel #1
0
def load_image(path):
    image_size = 160
    img = misc.imread(path)
    if img.ndim == 2:
        img = to_rgb(img)
    img = prewhiten(img)
    img = crop(img, False, image_size)
    img = flip(img, False)
    return img
Beispiel #2
0
def raw_process(img):
    if img.ndim == 2:
        img = to_rgb(img)
    try:
        img = prewhiten(img)
    except:
        pass
    img = crop(img, False, 160)
    img = flip(img, False)
    return img
def RecognizeFace(frames, model=None, class_names=None):

    with tf.Graph().as_default():
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.6)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                                log_device_placement=False))
        with sess.as_default():
            pnet, rnet, onet = detect_face.create_mtcnn(sess, npy)

            minsize = 20  # minimum size of face
            threshold = [0.6, 0.7, 0.7]  # three steps's threshold
            factor = 0.709  # scale factor
            margin = 32
            frame_interval = 3
            batch_size = 1000
            image_size = 160
            input_image_size = 160

            print('Loading feature extraction model')
            facenet.load_model(modeldir)

            images_placeholder = tf.get_default_graph().get_tensor_by_name(
                "input:0")
            embeddings = tf.get_default_graph().get_tensor_by_name(
                "embeddings:0")
            phase_train_placeholder = tf.get_default_graph(
            ).get_tensor_by_name("phase_train:0")
            embedding_size = embeddings.get_shape()[1]

            classifier_filename_exp = os.path.expanduser(classifier_filename)
            if model == None or class_names == None:
                with open(classifier_filename_exp, 'rb') as infile:
                    (model, class_names) = pickle.load(infile)

            # video_capture = cv2.VideoCapture("akshay_mov.mp4")
            c = 0

            HumanNames = class_names
            print(HumanNames)

            print('Start Recognition!')
            prevTime = 0
            # ret, frame = video_capture.read()
            #frame = cv2.imread(img_path,0)

            #frame = cv2.resize(frame, (0,0), fx=0.5, fy=0.5)    #resize frame (optional)
            total_faces_detected = {}
            for frame in frames:
                frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
                curTime = time.time() + 1  # calc fps
                timeF = frame_interval

                if (c % timeF == 0):
                    find_results = []

                    if frame.ndim == 2:
                        frame = facenet.to_rgb(frame)
                        frame = frame[:, :, 0:3]
                        bounding_boxes, _ = detect_face.detect_face(
                            frame, minsize, pnet, rnet, onet, threshold,
                            factor)
                        nrof_faces = bounding_boxes.shape[0]
                        print('Face Detected: %d' % nrof_faces)

                        if nrof_faces > 0:
                            det = bounding_boxes[:, 0:4]
                            img_size = np.asarray(frame.shape)[0:2]

                            cropped = []
                            scaled = []
                            scaled_reshape = []
                            bb = np.zeros((nrof_faces, 4), dtype=np.int32)

                            for i in range(nrof_faces):
                                emb_array = np.zeros((1, embedding_size))

                                bb[i][0] = det[i][0]
                                bb[i][1] = det[i][1]
                                bb[i][2] = det[i][2]
                                bb[i][3] = det[i][3]

                                #inner exception
                                if bb[i][0] <= 0 or bb[i][1] <= 0 or bb[i][
                                        2] >= len(frame[0]) or bb[i][3] >= len(
                                            frame):
                                    print('face is too close')
                                    break

                                cropped.append(frame[bb[i][1]:bb[i][3],
                                                     bb[i][0]:bb[i][2], :])
                                cropped[i] = facenet.flip(cropped[i], False)
                                scaled.append(
                                    misc.imresize(cropped[i],
                                                  (image_size, image_size),
                                                  interp='bilinear'))
                                scaled[i] = cv2.resize(
                                    scaled[i],
                                    (input_image_size, input_image_size),
                                    interpolation=cv2.INTER_CUBIC)
                                scaled[i] = facenet.prewhiten(scaled[i])
                                scaled_reshape.append(scaled[i].reshape(
                                    -1, input_image_size, input_image_size, 3))
                                feed_dict = {
                                    images_placeholder: scaled_reshape[i],
                                    phase_train_placeholder: False
                                }
                                emb_array[0, :] = sess.run(embeddings,
                                                           feed_dict=feed_dict)

                                predictions = model.predict_proba(emb_array)
                                print(predictions)
                                best_class_indices = np.argmax(predictions,
                                                               axis=1)
                                # print(best_class_indices)
                                best_class_probabilities = predictions[
                                    np.arange(len(best_class_indices)),
                                    best_class_indices]

                                #plot result idx under box
                                text_x = bb[i][0]
                                text_y = bb[i][3] + 20
                                print('Result Indices: ',
                                      best_class_indices[0])
                                print(HumanNames)
                                for H_i in HumanNames:
                                    # print(H_i)
                                    if HumanNames[best_class_indices[
                                            0]] == H_i and best_class_probabilities >= 0.4:
                                        result_names = HumanNames[
                                            best_class_indices[0]]
                                        if result_names in total_faces_detected:
                                            if predictions[0][best_class_indices[
                                                    0]] > total_faces_detected[
                                                        result_names]:
                                                total_faces_detected[
                                                    result_names] = predictions[
                                                        0][best_class_indices[
                                                            0]]
                                        else:
                                            total_faces_detected[
                                                result_names] = predictions[0][
                                                    best_class_indices[0]]

                    else:
                        print("BHAKKK")
            if len(total_faces_detected) == 0:
                return None
            else:
                x = sorted(total_faces_detected.items(),
                           key=operator.itemgetter(1))
                return [x[len(x) - 1][0]]
Beispiel #4
0
def image_array_align_data(image_arr,
                           image_path,
                           pnet,
                           rnet,
                           onet,
                           image_size=160,
                           margin=32,
                           detect_multiple_faces=True):
    """
    截取人脸的类
    :param image_arr: 人脸像素点数组
    :param image_path: 拍摄人脸存储路径
    :param pnet: caffe模型
    :param rnet: caffe模型
    :param onet: caffe模型
    :param image_size: 图像大小
    :param margin: 边缘截取
    :param gpu_memory_fraction: 允许的gpu内存大小
    :param detect_multiple_faces: 是否可以识别多张脸,默认为False
    :return: 若成功,返回截取的人脸数组集合如果没有检测到人脸,直接返回一个1*3的0矩阵
    """
    minsize = MINSIZE  # minimum size of face
    threshold = THRESHOLD  # three steps's threshold
    factor = FACTOR  # scale factor

    img = image_arr
    bounding_boxes, _ = detect_face(img, minsize, pnet, rnet, onet, threshold,
                                    factor)
    nrof_faces = bounding_boxes.shape[0]

    nrof_successfully_aligned = 0
    if nrof_faces > 0:
        det = bounding_boxes[:, 0:4]
        det_arr = []
        img_size = np.asarray(img.shape)[0:2]
        if nrof_faces > 1:
            if detect_multiple_faces:
                for i in range(nrof_faces):
                    det_arr.append(np.squeeze(det[i]))
            else:
                bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] -
                                                               det[:, 1])
                img_center = img_size / 2
                offsets = np.vstack([
                    (det[:, 0] + det[:, 2]) / 2 - img_center[1],
                    (det[:, 1] + det[:, 3]) / 2 - img_center[0]
                ])
                offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
                index = np.argmax(bounding_box_size - offset_dist_squared *
                                  2.0)  # some extra weight on the centering
                det_arr.append(det[index, :])
        else:
            det_arr.append(np.squeeze(det))

        images = np.zeros((len(det_arr), image_size, image_size, 3))
        for i, det in enumerate(det_arr):
            det = np.squeeze(det)
            bb = np.zeros(4, dtype=np.int32)
            bb[0] = np.maximum(det[0] - margin / 2, 0)
            bb[1] = np.maximum(det[1] - margin / 2, 0)
            bb[2] = np.minimum(det[2] + margin / 2, img_size[1])
            bb[3] = np.minimum(det[3] + margin / 2, img_size[0])
            cropped = img[bb[1]:bb[3], bb[0]:bb[2], :]
            # 进行图片缩放 cv2.resize(img,(w,h))
            scaled = misc.imresize(cropped, (image_size, image_size),
                                   interp='bilinear')
            nrof_successfully_aligned += 1

            # 保存检测的头像
            filename_base = BASE_DIR + os.sep + 'media' + os.sep + 'face_160' + os.sep + datetime.datetime.now(
            ).strftime('%Y-%m-%d')

            if not os.path.exists(filename_base):
                os.mkdir(filename_base)

            filename = os.path.basename(image_path)
            filename_name, file_extension = os.path.splitext(filename)
            # 多个人脸时,在picname后加_0 _1 _2 依次累加。
            output_filename_n = "{}/{}_{}{}".format(filename_base,
                                                    filename_name, i,
                                                    file_extension)
            misc.imsave(output_filename_n, scaled)

            scaled = prewhiten(scaled)
            scaled = crop(scaled, False, 160)
            scaled = flip(scaled, False)

            images[i] = scaled
    if nrof_faces > 0:
        return images
    else:
        return np.zeros((1, 3))