Beispiel #1
0
def main(args):
    start_time = time.time()
    total_translate_time = 0

    utils.import_user_module(args)

    if args.buffer_size < 1:
        args.buffer_size = 1
    if args.max_tokens is None and args.batch_size is None:
        args.batch_size = 1

    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert not args.batch_size or args.batch_size <= args.buffer_size, \
        '--batch-size cannot be larger than --buffer-size'

    logger.info(args)

    # Fix seed for stochastic decoding
    if args.seed is not None and not args.no_seed_provided:
        np.random.seed(args.seed)
        utils.set_torch_seed(args.seed)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Setup task, e.g., translation
    task = tasks.setup_task(args)

    # Load ensemble
    logger.info('loading model(s) from {}'.format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        args.path.split(os.pathsep),
        arg_overrides=eval(args.model_overrides),
        task=task,
        suffix=getattr(args, "checkpoint_suffix", ""),
        strict=(args.checkpoint_shard_count == 1),
        num_shards=args.checkpoint_shard_count,
    )

    # Set dictionaries
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary

    # Optimize ensemble for generation
    for model in models:
        if args.fp16:
            model.half()
        if use_cuda and not args.pipeline_model_parallel:
            model.cuda()
        model.prepare_for_inference_(args)

    # Initialize generator
    generator = task.build_generator(models, args)

    # Handle tokenization and BPE
    tokenizer = encoders.build_tokenizer(args)
    bpe = encoders.build_bpe(args)

    def encode_fn(x):
        if tokenizer is not None:
            x = tokenizer.encode(x)
        if bpe is not None:
            x = bpe.encode(x)
        return x

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    max_positions = utils.resolve_max_positions(
        task.max_positions(),
        *[model.max_positions() for model in models]
    )

    if args.constraints:
        logger.warning("NOTE: Constrained decoding currently assumes a shared subword vocabulary.")

    if args.buffer_size > 1:
        logger.info('Sentence buffer size: %s', args.buffer_size)
    logger.info('NOTE: hypothesis and token scores are output in base 2')
    logger.info('Type the input sentence and press return:')
    start_id = 0
    for inputs in buffered_read(args.input, args.buffer_size):
        results = []
        for batch in make_batches(inputs, args, task, max_positions, encode_fn):
            bsz = batch.src_tokens.size(0)
            src_tokens = batch.src_tokens
            src_lengths = batch.src_lengths
            constraints = batch.constraints
            if use_cuda:
                src_tokens = src_tokens.cuda()
                src_lengths = src_lengths.cuda()
                if constraints is not None:
                    constraints = constraints.cuda()

            sample = {
                'net_input': {
                    'src_tokens': src_tokens,
                    'src_lengths': src_lengths,
                },
            }
            translate_start_time = time.time()
            translations = task.inference_step(generator, models, sample, constraints=constraints)
            translate_time = time.time() - translate_start_time
            total_translate_time += translate_time
            list_constraints = [[] for _ in range(bsz)]
            if args.constraints:
                list_constraints = [unpack_constraints(c) for c in constraints]
            for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)):
                src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad())
                constraints = list_constraints[i]
                results.append((start_id + id, src_tokens_i, hypos,
                                { "constraints": constraints,
                                  "time": translate_time / len(translations) }
                            ))

        # sort output to match input order
        for id_, src_tokens, hypos, info in sorted(results, key=lambda x: x[0]):
            if src_dict is not None:
                src_str = src_dict.string(src_tokens, args.remove_bpe)
                print('S-{}\t{}'.format(id_, src_str))
                print("W-{}\t{:.3f}\tseconds".format(id_, info["time"]))
                for constraint in info["constraints"]:
                    print("C-{}\t{}".format(id_, tgt_dict.string(constraint, args.remove_bpe)))

            # Process top predictions
            for hypo in hypos[:min(len(hypos), args.nbest)]:
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'],
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=args.remove_bpe,
                    extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator),
                )
                detok_hypo_str = decode_fn(hypo_str)
                score = hypo['score'] / math.log(2)  # convert to base 2
                # original hypothesis (after tokenization and BPE)
                print('H-{}\t{}\t{}'.format(id_, score, hypo_str))
                # detokenized hypothesis
                print('D-{}\t{}\t{}'.format(id_, score, detok_hypo_str))
                print('P-{}\t{}'.format(
                    id_,
                    ' '.join(map(
                        lambda x: '{:.4f}'.format(x),
                        # convert from base e to base 2
                        hypo['positional_scores'].div_(math.log(2)).tolist(),
                    ))
                ))
                if args.print_alignment:
                    alignment_str = " ".join(["{}-{}".format(src, tgt) for src, tgt in alignment])
                    print('A-{}\t{}'.format(
                        id_,
                        alignment_str
                    ))

        # update running id_ counter
        start_id += len(inputs)

    logger.info("Total time: {:.3f} seconds; translation time: {:.3f}".format(time.time() - start_time, total_translate_time))
Beispiel #2
0
 def __init__(self, tokenizer, **kwargs):
     super().__init__()
     args = argparse.Namespace(tokenizer=tokenizer, **kwargs)
     self.tokenizer = encoders.build_tokenizer(args)
     assert self.tokenizer is not None
Beispiel #3
0
def _main(args, output_file):
    logging.basicConfig(
        format='%(asctime)s | %(levelname)s | %(name)s | %(message)s',
        datefmt='%Y-%m-%d %H:%M:%S',
        level=logging.INFO,
        stream=output_file,
    )
    logger = logging.getLogger('fairseq_cli.generate')

    utils.import_user_module(args)

    if args.max_tokens is None and args.max_sentences is None:
        args.max_tokens = 12000
    logger.info(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load dataset splits
    task = tasks.setup_task(args)
    task.load_dataset(args.gen_subset)

    # Set dictionaries
    try:
        src_dict = getattr(task, 'source_dictionary', None)
    except NotImplementedError:
        src_dict = None
    tgt_dict = task.target_dictionary

    # Load ensemble
    logger.info('loading model(s) from {}'.format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        utils.split_paths(args.path),
        arg_overrides=eval(args.model_overrides),
        task=task,
    )

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Load dataset (possibly sharded)
    itr = task.get_batch_iterator(
        dataset=task.dataset(args.gen_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=utils.resolve_max_positions(
            task.max_positions(),
            *[model.max_positions() for model in models]),
        ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=args.required_batch_size_multiple,
        num_shards=args.num_shards,
        shard_id=args.shard_id,
        num_workers=args.num_workers,
    ).next_epoch_itr(shuffle=False)
    progress = progress_bar.progress_bar(
        itr,
        log_format=args.log_format,
        log_interval=args.log_interval,
        default_log_format=('tqdm' if not args.no_progress_bar else 'none'),
    )

    # debug: ahmed
    def quantize(data, n, max_value=1):
        scale = ((2**(n) - 1) / 2) / torch.max(torch.abs(data))  # adaptive max
        #scale = ((2**(n)-1)/2)/max_value # static max (predetermined)
        return torch.round(scale * data) / scale

    # quantize model layer by layer to n-bit
    #print("#########################################")
    for name, param in model.named_parameters():
        if param.requires_grad and ('weight' in name):
            layer = 'model.' + name
    #fileName = 'model_wmt14.weights.layers'
    fileName = 'model_iwslt14.tokenized.de-en.weights.layers'
    with open(fileName) as f:
        layersList = f.readlines()
    layersNamesList = [layerName.rstrip('\n') for layerName in layersList]
    layer_max_dict = pickle.load(open("layer_max_dict.pkl", "rb"))
    n = 8  #PRANNOY (type=int)
    for layer in layersNamesList:
        print('----------')
        #print(model.encoder.layers[0].self_attn)

        print(layer)
        kernel = eval(layer)
        max_value = layer_max_dict[layer].item()
        kernel_q = quantize(kernel, n)  # adaptive (on the fly)
        #kernel_q = quantize(kernel, 8, max_value) # static
        exec(layer + '=' + 'torch.nn.Parameter(kernel_q)')
        print(len((eval(layer)).unique()))
    """ 
    # quantize model layer by layer to n-bit
    print("#########################################")
    #print(model.encoder.embed_tokens.weight.shape)
    fileName = 'model_print.keys.weights.layers'
    with open(fileName) as f:
        layersList = f.readlines()
    layersNamesList = [layerName.rstrip('\n') for layerName in layersList]
    for layer in layersNamesList:
        #print(vars(layer).shape) 
        #print(model.encoder.embed_tokens.weight)
        #print(exec(layer))
        #print(globals()[layer]) 
        #print(eval(layer).shape) 

        print('------------')
        print(layer)
        kernel = eval(layer)
        kernel_q = quantize(kernel)
        #eval(layer) = torch.nn.Parameter(kernel_q)
        exec(layer + '=' + 'torch.nn.Parameter(kernel_q)')
        print(len((eval(layer)).unique()))
        #print(model)
        #kernel = model.decoder.layers[3].fc1.weight
        #print(kernel.shape)
        #print(torch.max(torch.abs(kernel)))
        #print(kernel[0][0:3])
        #print(len(set(model.decoder.layers[3].fc1.weight)))
        #kernel_q = quantize(kernel)
        #print(kernel_q[0][0:3])
        #model.decoder.layers[3].fc1.weight = torch.nn.Parameter(kernel_q)
        #print(len((model.decoder.layers[3].fc1.weight).unique()))
    print("#########################################")
    """

    # Initialize generator
    gen_timer = StopwatchMeter()
    generator = task.build_generator(models, args)

    # Handle tokenization and BPE
    tokenizer = encoders.build_tokenizer(args)
    bpe = encoders.build_bpe(args)

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    # Generate and compute BLEU score
    if args.sacrebleu:
        scorer = bleu.SacrebleuScorer()
    else:
        scorer = bleu.Scorer(tgt_dict.pad(), tgt_dict.eos(), tgt_dict.unk())
    num_sentences = 0
    has_target = True
    wps_meter = TimeMeter()
    for sample in progress:
        sample = utils.move_to_cuda(sample) if use_cuda else sample
        if 'net_input' not in sample:
            continue

        prefix_tokens = None
        if args.prefix_size > 0:
            prefix_tokens = sample['target'][:, :args.prefix_size]

        gen_timer.start()
        hypos = task.inference_step(generator, models, sample, prefix_tokens)
        num_generated_tokens = sum(len(h[0]['tokens']) for h in hypos)
        gen_timer.stop(num_generated_tokens)

        for i, sample_id in enumerate(sample['id'].tolist()):
            has_target = sample['target'] is not None

            # Remove padding
            src_tokens = utils.strip_pad(
                sample['net_input']['src_tokens'][i, :], tgt_dict.pad())
            target_tokens = None
            if has_target:
                target_tokens = utils.strip_pad(sample['target'][i, :],
                                                tgt_dict.pad()).int().cpu()

            # Either retrieve the original sentences or regenerate them from tokens.
            if align_dict is not None:
                src_str = task.dataset(
                    args.gen_subset).src.get_original_text(sample_id)
                target_str = task.dataset(
                    args.gen_subset).tgt.get_original_text(sample_id)
            else:
                if src_dict is not None:
                    src_str = src_dict.string(src_tokens, args.remove_bpe)
                else:
                    src_str = ""
                if has_target:
                    target_str = tgt_dict.string(target_tokens,
                                                 args.remove_bpe,
                                                 escape_unk=True,
                                                 extra_symbols_to_ignore={
                                                     generator.eos,
                                                 })

            src_str = decode_fn(src_str)
            if has_target:
                target_str = decode_fn(target_str)

            if not args.quiet:
                if src_dict is not None:
                    print('S-{}\t{}'.format(sample_id, src_str),
                          file=output_file)
                if has_target:
                    print('T-{}\t{}'.format(sample_id, target_str),
                          file=output_file)

            # Process top predictions
            for j, hypo in enumerate(hypos[i][:args.nbest]):
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'],
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=args.remove_bpe,
                    extra_symbols_to_ignore={
                        generator.eos,
                    })
                detok_hypo_str = decode_fn(hypo_str)
                if not args.quiet:
                    score = hypo['score'] / math.log(2)  # convert to base 2
                    # original hypothesis (after tokenization and BPE)
                    print('H-{}\t{}\t{}'.format(sample_id, score, hypo_str),
                          file=output_file)
                    # detokenized hypothesis
                    print('D-{}\t{}\t{}'.format(sample_id, score,
                                                detok_hypo_str),
                          file=output_file)
                    print(
                        'P-{}\t{}'.format(
                            sample_id,
                            ' '.join(
                                map(
                                    lambda x: '{:.4f}'.format(x),
                                    # convert from base e to base 2
                                    hypo['positional_scores'].div_(math.log(2)
                                                                   ).tolist(),
                                ))),
                        file=output_file)

                    if args.print_alignment:
                        print('A-{}\t{}'.format(
                            sample_id, ' '.join([
                                '{}-{}'.format(src_idx, tgt_idx)
                                for src_idx, tgt_idx in alignment
                            ])),
                              file=output_file)

                    if args.print_step:
                        print('I-{}\t{}'.format(sample_id, hypo['steps']),
                              file=output_file)

                    if getattr(args, 'retain_iter_history', False):
                        for step, h in enumerate(hypo['history']):
                            _, h_str, _ = utils.post_process_prediction(
                                hypo_tokens=h['tokens'].int().cpu(),
                                src_str=src_str,
                                alignment=None,
                                align_dict=None,
                                tgt_dict=tgt_dict,
                                remove_bpe=None,
                            )
                            print('E-{}_{}\t{}'.format(sample_id, step, h_str),
                                  file=output_file)

                # Score only the top hypothesis
                if has_target and j == 0:
                    if align_dict is not None or args.remove_bpe is not None:
                        # Convert back to tokens for evaluation with unk replacement and/or without BPE
                        target_tokens = tgt_dict.encode_line(
                            target_str, add_if_not_exist=True)
                        hypo_tokens = tgt_dict.encode_line(
                            detok_hypo_str, add_if_not_exist=True)
                    if hasattr(scorer, 'add_string'):
                        scorer.add_string(target_str, detok_hypo_str)
                    else:
                        scorer.add(target_tokens, hypo_tokens)

        wps_meter.update(num_generated_tokens)
        progress.log({'wps': round(wps_meter.avg)})
        num_sentences += sample['nsentences']

    logger.info('NOTE: hypothesis and token scores are output in base 2')
    logger.info(
        'Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'
        .format(num_sentences, gen_timer.n, gen_timer.sum,
                num_sentences / gen_timer.sum, 1. / gen_timer.avg))
    if has_target:
        if args.bpe and not args.sacrebleu:
            if args.remove_bpe:
                logger.warning(
                    "BLEU score is being computed by splitting detokenized string on spaces, this is probably not what you want. Use --sacrebleu for standard 13a BLEU tokenization"
                )
            else:
                logger.warning(
                    "If you are using BPE on the target side, the BLEU score is computed on BPE tokens, not on proper words.  Use --sacrebleu for standard 13a BLEU tokenization"
                )
        logger.info('Generate {} with beam={}: {}'.format(
            args.gen_subset, args.beam, scorer.result_string()))
        # ahmed: logging
        with open("infer_BLEU.txt", "a") as myfile:
            myfile.write(scorer.result_string())
            myfile.write("\n")

    return scorer
Beispiel #4
0
 def build_tokenizer(self, args):
     """Build the pre-tokenizer for this task."""
     return encoders.build_tokenizer(args)
Beispiel #5
0
def predict(image_id_path: str,
            grid_features_path: str,
            obj_features_path: str,
            obj_features_meta_path: str,
            model_args) -> pd.DataFrame:
    print(model_args)
    use_cuda = torch.cuda.is_available() and not model_args.cpu

    task = tasks.setup_task(model_args)
    captions_dict = task.target_dictionary

    models, _model_args = checkpoint_utils.load_model_ensemble(model_args.path.split(':'), task=task)

    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if model_args.no_beamable_mm else model_args.beam,
            need_attn=model_args.print_alignment,
        )

        if torch.cuda.is_available() and not model_args.cpu:
            model.cuda()

    generator = task.build_generator(model_args)
    tokenizer = encoders.build_tokenizer(model_args)
    bpe = encoders.build_bpe(model_args)

    def decode(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    sample_ids = read_sample_ids(model_args.input)
    image_ids = data.read_image_ids(image_id_path)

    assert_sample_id_validity(sample_ids, image_ids)

    if model_args.features == 'grid':
        image_ds = data.GridFeaturesDataset(grid_features_path, image_ids)
    elif model_args.features == 'obj':
        image_md = data.read_image_metadata(obj_features_meta_path)
        image_ds = data.ObjectFeaturesDataset(obj_features_path, image_ids, image_md)
    else:
        raise ValueError(f'Invalid --features option: {model_args.features}')

    prediction_ids = []
    prediction_results = []

    for sample_id in tqdm(sample_ids):
        features, locations = image_ds.read_data(sample_id)
        length = features.shape[0]

        if use_cuda:
            features = features.cuda()
            locations = locations.cuda()

        sample = {
            'net_input': {
                'src_tokens': features.unsqueeze(0),
                'src_locations': locations.unsqueeze(0),
                'src_lengths': [length]
            }
        }

        translations = task.inference_step(generator, models, sample)
        prediction = decode(captions_dict.string(translations[0][0]['tokens']))

        prediction_ids.append(sample_id)
        prediction_results.append(prediction)

    return pd.DataFrame.from_dict(data={
        'image_id': prediction_ids,
        'caption': prediction_results
    })
Beispiel #6
0
def main(args):
    utils.import_user_module(args)

    if args.buffer_size < 1:
        args.buffer_size = 1
    if args.max_tokens is None and args.max_sentences is None:
        args.max_sentences = 1

    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert not args.max_sentences or args.max_sentences <= args.buffer_size, \
        '--max-sentences/--batch-size cannot be larger than --buffer-size'

    logger.info(args)

    # Fix seed for stochastic decoding
    if args.seed is not None and not args.no_seed_provided:
        np.random.seed(args.seed)
        utils.set_torch_seed(args.seed)

    if args.ipex:
        import intel_pytorch_extension as ipex
        if args.dnnl:
            ipex.core.enable_auto_dnnl()
        else:
            ipex.core.disable_auto_dnnl()
        if args.mix_precision:
            ipex.core.enable_mix_bf16_fp32()

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Setup task, e.g., translation
    task = tasks.setup_task(args)

    # Load ensemble
    logger.info('loading model(s) from {}'.format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        args.path.split(os.pathsep),
        arg_overrides=eval(args.model_overrides),
        task=task,
        suffix=getattr(args, "checkpoint_suffix", ""),
    )

    # Set dictionaries
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary

    # Optimize ensemble for generation
    for model in models:
        model.prepare_for_inference_(args)
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()
        if args.ipex:
            model = model.to(device=ipex.DEVICE)

    # Initialize generator
    generator = task.build_generator(models, args)

    # Handle tokenization and BPE
    tokenizer = encoders.build_tokenizer(args)
    bpe = encoders.build_bpe(args)

    def encode_fn(x):
        if tokenizer is not None:
            x = tokenizer.encode(x)
        if bpe is not None:
            x = bpe.encode(x)
        return x

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    max_positions = utils.resolve_max_positions(
        task.max_positions(), *[model.max_positions() for model in models])

    if args.buffer_size > 1:
        logger.info('Sentence buffer size: %s', args.buffer_size)
    logger.info('NOTE: hypothesis and token scores are output in base 2')
    logger.info('Type the input sentence and press return:')
    start_id = 0
    for inputs in buffered_read(args.input, args.buffer_size):
        results = []
        for batch in make_batches(inputs, args, task, max_positions,
                                  encode_fn):
            src_tokens = batch.src_tokens
            src_lengths = batch.src_lengths
            if use_cuda:
                src_tokens = src_tokens.cuda()
                src_lengths = src_lengths.cuda()
            if args.ipex:
                src_tokens = src_tokens.to(device=ipex.DEVICE)
                src_lengths = src_lengths.to(device=ipex.DEVICE)
            sample = {
                'net_input': {
                    'src_tokens': src_tokens,
                    'src_lengths': src_lengths,
                },
            }
            translations = task.inference_step(generator, models, sample)
            for i, (id,
                    hypos) in enumerate(zip(batch.ids.tolist(), translations)):
                src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad())
                results.append((start_id + id, src_tokens_i, hypos))

        # sort output to match input order
        for id, src_tokens, hypos in sorted(results, key=lambda x: x[0]):
            if src_dict is not None:
                src_str = src_dict.string(src_tokens, args.remove_bpe)
                print('S-{}\t{}'.format(id, src_str))

            # Process top predictions
            for hypo in hypos[:min(len(hypos), args.nbest)]:
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'],
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=args.remove_bpe,
                )
                detok_hypo_str = decode_fn(hypo_str)
                score = hypo['score'] / math.log(2)  # convert to base 2
                # original hypothesis (after tokenization and BPE)
                print('H-{}\t{}\t{}'.format(id, score, hypo_str))
                # detokenized hypothesis
                print('D-{}\t{}\t{}'.format(id, score, detok_hypo_str))
                print('P-{}\t{}'.format(
                    id,
                    ' '.join(
                        map(
                            lambda x: '{:.4f}'.format(x),
                            # convert from base e to base 2
                            hypo['positional_scores'].div_(math.log(2)
                                                           ).tolist(),
                        ))))
                if args.print_alignment:
                    alignment_str = " ".join(
                        ["{}-{}".format(src, tgt) for src, tgt in alignment])
                    print('A-{}\t{}'.format(id, alignment_str))

        # update running id counter
        start_id += len(inputs)
Beispiel #7
0
def _main(args, output_file):
    logging.basicConfig(
        format='%(asctime)s | %(levelname)s | %(name)s | %(message)s',
        datefmt='%Y-%m-%d %H:%M:%S',
        level=logging.INFO,
        stream=output_file,
    )
    logger = logging.getLogger('fairseq_cli.generate')

    utils.import_user_module(args)

    if args.max_tokens is None and args.max_sentences is None:
        args.max_tokens = 12000
    logger.info(args)

    # Fix seed for stochastic decoding
    if args.seed is not None and not args.no_seed_provided:
        np.random.seed(args.seed)
        utils.set_torch_seed(args.seed)

    use_cuda = torch.cuda.is_available() and not args.cpu

    Tokenizer.build_tokenizer(args)

    # Load dataset splits
    task = tasks.setup_task(args)
    task.load_dataset(args.gen_subset)

    # Set dictionaries
    try:
        src_dict = getattr(task, 'source_dictionary', None)
    except NotImplementedError:
        src_dict = None
    tgt_dict = task.target_dictionary

    # Load ensemble
    logger.info('loading model(s) from {}'.format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        utils.split_paths(args.path),
        arg_overrides=eval(args.model_overrides),
        task=task,
        suffix=getattr(args, "checkpoint_suffix", ""),
    )

    # Optimize ensemble for generation
    for model in models:
        model.prepare_for_inference_(args)
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Load dataset (possibly sharded)
    itr = task.get_batch_iterator(
        dataset=task.dataset(args.gen_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=utils.resolve_max_positions(
            task.max_positions(),
            *[model.max_positions() for model in models]
        ),
        ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=args.required_batch_size_multiple,
        num_shards=args.num_shards,
        shard_id=args.shard_id,
        num_workers=args.num_workers,
    ).next_epoch_itr(shuffle=False)
    progress = progress_bar.progress_bar(
        itr,
        log_format=args.log_format,
        log_interval=args.log_interval,
        default_log_format=('tqdm' if not args.no_progress_bar else 'none'),
    )

    # Initialize generator
    gen_timer = StopwatchMeter()
    generator = task.build_generator(models, args)

    # Handle tokenization and BPE
    tokenizer = encoders.build_tokenizer(args)
    bpe = encoders.build_bpe(args)

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    # Generate and compute BLEU score
    if args.sacrebleu:
        scorer = bleu.SacrebleuScorer()
    else:
        scorer = bleu.Scorer(tgt_dict.pad(), tgt_dict.eos(), tgt_dict.unk())
    num_sentences = 0
    has_target = True
    wps_meter = TimeMeter()
    for sample in progress:
        sample = utils.move_to_cuda(sample) if use_cuda else sample
        if 'net_input' not in sample:
            continue

        prefix_tokens = None
        if args.prefix_size > 0:
            prefix_tokens = sample['target'][:, :args.prefix_size]

        gen_timer.start()
        hypos = task.inference_step(generator, models, sample, prefix_tokens)
        num_generated_tokens = sum(len(h[0]['tokens']) for h in hypos)
        gen_timer.stop(num_generated_tokens)

        for i, sample_id in enumerate(sample['id'].tolist()):
            has_target = sample['target'] is not None

            # Remove padding
            src_tokens = utils.strip_pad(sample['net_input']['src_tokens'][i, :], tgt_dict.pad())
            target_tokens = None
            if has_target:
                target_tokens = utils.strip_pad(sample['target'][i, :], tgt_dict.pad()).int().cpu()

            # Either retrieve the original sentences or regenerate them from tokens.
            if align_dict is not None:
                src_str = task.dataset(args.gen_subset).src.get_original_text(sample_id)
                target_str = task.dataset(args.gen_subset).tgt.get_original_text(sample_id)
            else:
                if src_dict is not None:
                    src_str = src_dict.string(src_tokens, args.remove_bpe)
                else:
                    src_str = ""
                if has_target:
                    target_str = tgt_dict.string(
                        target_tokens,
                        args.remove_bpe,
                        escape_unk=True,
                        extra_symbols_to_ignore={
                            generator.eos,
                        }
                    )

            src_str = decode_fn(src_str)
            if has_target:
                target_str = decode_fn(target_str)

            if not args.quiet:
                if src_dict is not None:
                    print('S-{}\t{}'.format(sample_id, src_str), file=output_file)

                if has_target:
                    print('T-{}\t{}'.format(sample_id, target_str), file=output_file)

            # Process top predictions
            for j, hypo in enumerate(hypos[i][:args.nbest]):
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'],
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=args.remove_bpe,
                    extra_symbols_to_ignore={
                        generator.eos,
                    }
                )
                detok_hypo_str = decode_fn(hypo_str)
                if not args.quiet:
                    score = hypo['score'] / math.log(2)  # convert to base 2
                    # original hypothesis (after tokenization and BPE)
                    print('H-{}\t{}\t{}'.format(sample_id, score, hypo_str), file=output_file)
                    # detokenized hypothesis
                    print('D-{}\t{}\t{}'.format(sample_id, score, detok_hypo_str), file=output_file)
                    print('P-{}\t{}'.format(
                        sample_id,
                        ' '.join(map(
                            lambda x: '{:.4f}'.format(x),
                            # convert from base e to base 2
                            hypo['positional_scores'].div_(math.log(2)).tolist(),
                        ))
                    ), file=output_file)

                    if args.print_alignment:
                        print('A-{}\t{}'.format(
                            sample_id,
                            ' '.join(['{}-{}'.format(src_idx, tgt_idx) for src_idx, tgt_idx in alignment])
                        ), file=output_file)

                    if args.print_step:
                        print('I-{}\t{}'.format(sample_id, hypo['steps']), file=output_file)

                    if getattr(args, 'retain_iter_history', False):
                        for step, h in enumerate(hypo['history']):
                            _, h_str, _ = utils.post_process_prediction(
                                hypo_tokens=h['tokens'].int().cpu(),
                                src_str=src_str,
                                alignment=None,
                                align_dict=None,
                                tgt_dict=tgt_dict,
                                remove_bpe=None,
                            )
                            print('E-{}_{}\t{}'.format(sample_id, step, h_str), file=output_file)

                # Score only the top hypothesis
                if has_target and j == 0:
                    if align_dict is not None or args.remove_bpe is not None:
                        # Convert back to tokens for evaluation with unk replacement and/or without BPE
                        target_tokens = tgt_dict.encode_line(target_str, add_if_not_exist=True)
                        hypo_tokens = tgt_dict.encode_line(detok_hypo_str, add_if_not_exist=True)
                    if hasattr(scorer, 'add_string'):
                        scorer.add_string(target_str, detok_hypo_str)
                    else:
                        scorer.add(target_tokens, hypo_tokens)

        wps_meter.update(num_generated_tokens)
        progress.log({'wps': round(wps_meter.avg)})
        num_sentences += sample['nsentences']

    logger.info('NOTE: hypothesis and token scores are output in base 2')
    logger.info('Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'.format(
        num_sentences, gen_timer.n, gen_timer.sum, num_sentences / gen_timer.sum, 1. / gen_timer.avg))
    if has_target:
        if args.bpe and not args.sacrebleu:
            if args.remove_bpe:
                logger.warning("BLEU score is being computed by splitting detokenized string on spaces, this is probably not what you want. Use --sacrebleu for standard 13a BLEU tokenization")
            else:
                logger.warning("If you are using BPE on the target side, the BLEU score is computed on BPE tokens, not on proper words.  Use --sacrebleu for standard 13a BLEU tokenization")
        logger.info('Generate {} with beam={}: {}'.format(args.gen_subset, args.beam, scorer.result_string()))

    return scorer
def _main(cfg: DictConfig, output_file):
    logging.basicConfig(
        format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
        datefmt="%Y-%m-%d %H:%M:%S",
        level=os.environ.get("LOGLEVEL", "INFO").upper(),
        stream=output_file,
    )
    logger = logging.getLogger('fairseq_cli.predict')

    utils.import_user_module(cfg.common)

    if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None:
        cfg.dataset.max_tokens = 12000
    logger.info(cfg)

    # Fix seed for stochastic decoding
    if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
        np.random.seed(cfg.common.seed)
        utils.set_torch_seed(cfg.common.seed)

    use_cuda = torch.cuda.is_available() and not cfg.common.cpu

    # Load dataset splits
    task = tasks.setup_task(cfg.task)
    task.load_dataset(cfg.dataset.gen_subset)

    # Set dictionaries
    src_dict = getattr(task, 'source_dictionary', None)
    tag_dict = task.tag_dictionary

    overrides = ast.literal_eval(cfg.common_eval.model_overrides)

    # Load ensemble
    logger.info("loading model(s) from {}".format(cfg.common_eval.path))
    models, saved_cfg = checkpoint_utils.load_model_ensemble(
        utils.split_paths(cfg.common_eval.path),
        arg_overrides=overrides,
        task=task,
        suffix=cfg.checkpoint.checkpoint_suffix,
        strict=(cfg.checkpoint.checkpoint_shard_count == 1),
        num_shards=cfg.checkpoint.checkpoint_shard_count,
    )

    # Optimize ensemble for generation
    for model in models:
        model.prepare_for_inference_(cfg)
        if cfg.common.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Load dataset (possibly sharded)
    itr = task.get_batch_iterator(
        dataset=task.dataset(cfg.dataset.gen_subset),
        max_tokens=cfg.dataset.max_tokens,
        max_sentences=cfg.dataset.batch_size,
        max_positions=utils.resolve_max_positions(
            task.max_positions(),
            *[model.max_positions() for model in models]
        ),
        ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=cfg.dataset.required_batch_size_multiple,
        seed=cfg.common.seed,
        num_shards=cfg.distributed_training.distributed_world_size,
        shard_id=cfg.distributed_training.distributed_rank,
        num_workers=cfg.dataset.num_workers,
        data_buffer_size=cfg.dataset.data_buffer_size,
    ).next_epoch_itr(shuffle=False)
    progress = progress_bar.progress_bar(
        itr,
        log_format=cfg.common.log_format,
        log_interval=cfg.common.log_interval,
        default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
    )

    # Initialize generator
    gen_timer = StopwatchMeter()

    # Handle tokenization and BPE
    tokenizer = encoders.build_tokenizer(cfg.tokenizer)
    bpe = encoders.build_bpe(cfg.bpe)

    def decode_fn(x):  # decode tag
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    num_sentences = 0
    wps_meter = TimeMeter()
    for sample in progress:
        sample = utils.move_to_cuda(sample) if use_cuda else sample
        if 'net_input' not in sample:
            continue

        gen_timer.start()
        hypos = task.inference_step(models, sample, cfg.task.tagging_head_name)
        num_generated_tokens = sample['ntokens']
        gen_timer.stop(num_generated_tokens)

        for i, sample_id in enumerate(sample['id'].tolist()):
            hypo = hypos[i]

            hypo_tokens = np.array(
                hypo) + tag_dict.nspecial  # can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first
            hypo_str = tag_dict.string(hypo_tokens)
            has_target = sample['target'] is not None

            # Remove padding
            if 'src_tokens' in sample['net_input']:
                src_tokens = utils.strip_pad(sample['net_input']['src_tokens'][i, :], src_dict.pad())
                src_str = src_dict.string(src_tokens, cfg.common_eval.post_process)
                assert len(hypo) == src_tokens.numel()

            if has_target:
                tag_offset = 1
                tag_tokens = utils.strip_pad(sample['target'][i, :],
                                             src_dict.pad()).int().cpu() - tag_offset + tag_dict.nspecial
                tag_str = tag_dict.string(tag_tokens)

            src_str = decode_fn(src_str)
            tag_str = decode_fn(tag_str)

            if not cfg.common_eval.quiet:
                if src_dict is not None:
                    print('S-{}\t{}'.format(sample_id, src_str), file=output_file)
                if has_target:
                    print('T-{}\t{}'.format(sample_id, tag_str), file=output_file)
                print('H-{}\t{}'.format(sample_id, hypo_str), file=output_file)

        wps_meter.update(num_generated_tokens)
        progress.log({'wps': round(wps_meter.avg)})
        num_sentences += sample["nsentences"] if "nsentences" in sample else sample['id'].numel()

    logger.info('NOTE: hypothesis and token scores are output in base 2')
    logger.info('Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'.format(
        num_sentences, gen_timer.n, gen_timer.sum, num_sentences / gen_timer.sum, 1. / gen_timer.avg))
def main(args):
    utils.import_user_module(args)

    if args.buffer_size < 1:
        args.buffer_size = 1
    if args.max_tokens is None and args.max_sentences is None:
        args.max_sentences = 1

    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert not args.max_sentences or args.max_sentences <= args.buffer_size, \
        '--max-sentences/--batch-size cannot be larger than --buffer-size'

    print(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Setup task, e.g., translation
    task = tasks.setup_task(args)

    # Load ensemble
    print('| loading model(s) from {}'.format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        args.path.split(':'),
        arg_overrides=eval(args.model_overrides),
        task=task,
    )

    # Set dictionaries
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Initialize generator
    generator = task.build_generator(args)

    # Handle tokenization and BPE
    tokenizer = encoders.build_tokenizer(args)
    bpe = encoders.build_bpe(args)

    def encode_fn(x):
        if tokenizer is not None:
            x = tokenizer.encode(x)
        if bpe is not None:
            x = bpe.encode(x)
        return x

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    max_positions = utils.resolve_max_positions(
        task.max_positions(),
        *[model.max_positions() for model in models]
    )

    if args.buffer_size > 1:
        print('| Sentence buffer size:', args.buffer_size)
    print('| Type the input sentence and press return:')
    start_id = 0
    gen_timer = StopwatchMeter()
    for inputs in buffered_read(args.input, args.buffer_size):
        results = []

        # input is sentence \t s1|||t1 \t s2|||t2 ...
        new_inputs = []
        constraints = []
        for inp in inputs:
            inp = inp.split('\t')
            new_inputs.append(inp[0])
            constraints.append([tup.split('|||')[1] for tup in inp[1:]])

        for batch in make_batches(new_inputs, args, task, max_positions, encode_fn, constraints):
            src_tokens = batch.src_tokens
            src_lengths = batch.src_lengths
            tgt_init_tokens = batch.tgt_init_tokens
            tgt_init_lengths = batch.tgt_init_lengths
            if use_cuda:
                src_tokens = src_tokens.cuda()
                src_lengths = src_lengths.cuda()
                tgt_init_tokens = tgt_init_tokens.cuda()
                tgt_init_lengths = tgt_init_lengths.cuda()

            sample = {
                'net_input': {
                    'src_tokens': src_tokens,
                    'src_lengths': src_lengths,
                    'tgt_init_tokens': tgt_init_tokens,
                    'tgt_init_lengths': tgt_init_lengths,
                },
            }
            gen_timer.start()
            translations = task.inference_step(generator, models, sample)
            num_generated_tokens = sum(len(h[0]['tokens']) for h in translations)
            gen_timer.stop(num_generated_tokens)
            for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)):
                src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad())
                results.append((start_id + id, src_tokens_i, hypos))

        # sort output to match input order
        for id, src_tokens, hypos in sorted(results, key=lambda x: x[0]):
            if src_dict is not None:
                src_str = src_dict.string(src_tokens, args.remove_bpe)
                print('S-{}\t{}'.format(id, src_str))

            # Process top predictions
            for hypo in hypos[:min(len(hypos), args.nbest)]:
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'],
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=args.remove_bpe,
                )
                hypo_str = decode_fn(hypo_str)
                print('H-{}\t{}\t{}'.format(id, hypo['score'], hypo_str))
                print('P-{}\t{}'.format(
                    id,
                    ' '.join(map(lambda x: '{:.4f}'.format(x), hypo['positional_scores'].tolist()))
                ))
                if args.print_alignment:
                    alignment_str = " ".join(["{}-{}".format(src, tgt) for src, tgt in alignment])
                    print('A-{}\t{}'.format(
                        id,
                        alignment_str
                    ))

        # update running id counter
        start_id += len(inputs)
    print('| Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'.format(
        start_id, gen_timer.n, gen_timer.sum, start_id / gen_timer.sum, 1. / gen_timer.avg))
Beispiel #10
0
def _main(cfg: DictConfig, output_file):
    logging.basicConfig(
        format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
        datefmt="%Y-%m-%d %H:%M:%S",
        level=os.environ.get("LOGLEVEL", "INFO").upper(),
        stream=output_file,
    )
    logger = logging.getLogger("fairseq_cli.generate")

    utils.import_user_module(cfg.common)

    if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None:
        cfg.dataset.max_tokens = 12000
    logger.info(cfg)

    # Fix seed for stochastic decoding
    if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
        np.random.seed(cfg.common.seed)
        utils.set_torch_seed(cfg.common.seed)

    use_cuda = torch.cuda.is_available() and not cfg.common.cpu

    # Load dataset splits
    task = tasks.setup_task(cfg.task)
    task.load_dataset(cfg.dataset.gen_subset)

    # Set dictionaries
    try:
        src_dict = getattr(task, "source_dictionary", None)
    except NotImplementedError:
        src_dict = None
    tgt_dict = task.target_dictionary

    overrides = ast.literal_eval(cfg.common_eval.model_overrides)

    # Load ensemble
    logger.info("loading model(s) from {}".format(cfg.common_eval.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        utils.split_paths(cfg.common_eval.path),
        arg_overrides=overrides,
        task=task,
        suffix=cfg.checkpoint.checkpoint_suffix,
        strict=(cfg.checkpoint.checkpoint_shard_count == 1),
        num_shards=cfg.checkpoint.checkpoint_shard_count,
    )

    if cfg.generation.lm_path is not None:
        overrides["data"] = cfg.task.data

        try:
            lms, _ = checkpoint_utils.load_model_ensemble(
                [cfg.generation.lm_path], arg_overrides=overrides, task=None)
        except:
            logger.warning(
                f"Failed to load language model! Please make sure that the language model dict is the same "
                f"as target dict and is located in the data dir ({cfg.task.data})"
            )
            raise

        assert len(lms) == 1
    else:
        lms = [None]

    # Optimize ensemble for generation
    for model in chain(models, lms):
        if model is None:
            continue
        if cfg.common.fp16:
            model.half()
        if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
            model.cuda()
        model.prepare_for_inference_(cfg)

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(cfg.generation.replace_unk)

    # Load dataset (possibly sharded)
    itr = task.get_batch_iterator(
        dataset=task.dataset(cfg.dataset.gen_subset),
        max_tokens=cfg.dataset.max_tokens,
        max_sentences=cfg.dataset.batch_size,
        max_positions=utils.resolve_max_positions(
            task.max_positions(), *[m.max_positions() for m in models]),
        ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=cfg.dataset.required_batch_size_multiple,
        seed=cfg.common.seed,
        num_shards=cfg.distributed_training.distributed_world_size,
        shard_id=cfg.distributed_training.distributed_rank,
        num_workers=cfg.dataset.num_workers,
        data_buffer_size=cfg.dataset.data_buffer_size,
    ).next_epoch_itr(shuffle=False)
    progress = progress_bar.progress_bar(
        itr,
        log_format=cfg.common.log_format,
        log_interval=cfg.common.log_interval,
        default_log_format=("tqdm"
                            if not cfg.common.no_progress_bar else "simple"),
    )

    # Initialize generator
    gen_timer = StopwatchMeter()

    extra_gen_cls_kwargs = {
        "lm_model": lms[0],
        "lm_weight": cfg.generation.lm_weight
    }
    generator = task.build_generator(models,
                                     cfg.task,
                                     extra_gen_cls_kwargs=extra_gen_cls_kwargs)

    # Handle tokenization and BPE
    tokenizer = encoders.build_tokenizer(cfg.tokenizer)
    bpe = encoders.build_bpe(cfg.bpe)

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    scorer = scoring.build_scorer(cfg.scoring, tgt_dict)

    num_sentences = 0
    has_target = True
    wps_meter = TimeMeter()
    for sample in progress:
        sample = utils.move_to_cuda(sample) if use_cuda else sample
        if "net_input" not in sample:
            continue

        prefix_tokens = None
        if cfg.generation.prefix_size > 0:
            prefix_tokens = sample["target"][:, :cfg.generation.prefix_size]

        constraints = None
        if "constraints" in sample:
            constraints = sample["constraints"]

        gen_timer.start()
        hypos = task.inference_step(
            generator,
            models,
            sample,
            prefix_tokens=prefix_tokens,
            constraints=constraints,
        )
        num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos)
        gen_timer.stop(num_generated_tokens)

        for i, sample_id in enumerate(sample["id"].tolist()):
            has_target = sample["target"] is not None

            # Remove padding
            if "src_tokens" in sample["net_input"]:
                src_tokens = utils.strip_pad(
                    sample["net_input"]["src_tokens"][i, :], tgt_dict.pad())
            else:
                src_tokens = None

            target_tokens = None
            if has_target:
                target_tokens = (utils.strip_pad(sample["target"][i, :],
                                                 tgt_dict.pad()).int().cpu())

            # Either retrieve the original sentences or regenerate them from tokens.
            if align_dict is not None:
                src_str = task.dataset(
                    cfg.dataset.gen_subset).src.get_original_text(sample_id)
                target_str = task.dataset(
                    cfg.dataset.gen_subset).tgt.get_original_text(sample_id)
            else:
                if src_dict is not None:
                    src_str = src_dict.string(src_tokens,
                                              cfg.common_eval.post_process)
                else:
                    src_str = ""
                if has_target:
                    target_str = tgt_dict.string(
                        target_tokens,
                        cfg.common_eval.post_process,
                        escape_unk=True,
                        extra_symbols_to_ignore=
                        get_symbols_to_strip_from_output(generator),
                    )

            src_str = decode_fn(src_str)
            if has_target:
                target_str = decode_fn(target_str)

            if not cfg.common_eval.quiet:
                if src_dict is not None:
                    print("S-{}\t{}".format(sample_id, src_str),
                          file=output_file)
                if has_target:
                    print("T-{}\t{}".format(sample_id, target_str),
                          file=output_file)

            # Process top predictions
            for j, hypo in enumerate(hypos[i][:cfg.generation.nbest]):
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo["tokens"].int().cpu(),
                    src_str=src_str,
                    alignment=hypo["alignment"],
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=cfg.common_eval.post_process,
                    extra_symbols_to_ignore=get_symbols_to_strip_from_output(
                        generator),
                )
                detok_hypo_str = decode_fn(hypo_str)
                if not cfg.common_eval.quiet:
                    score = hypo["score"] / math.log(2)  # convert to base 2
                    # original hypothesis (after tokenization and BPE)
                    print(
                        "H-{}\t{}\t{}".format(sample_id, score, hypo_str),
                        file=output_file,
                    )
                    # detokenized hypothesis
                    print(
                        "D-{}\t{}\t{}".format(sample_id, score,
                                              detok_hypo_str),
                        file=output_file,
                    )
                    print(
                        "P-{}\t{}".format(
                            sample_id,
                            " ".join(
                                map(
                                    lambda x: "{:.4f}".format(x),
                                    # convert from base e to base 2
                                    hypo["positional_scores"].div_(math.log(2)
                                                                   ).tolist(),
                                )),
                        ),
                        file=output_file,
                    )

                    if cfg.generation.print_alignment:
                        print(
                            "A-{}\t{}".format(
                                sample_id,
                                " ".join([
                                    "{}-{}".format(src_idx, tgt_idx)
                                    for src_idx, tgt_idx in alignment
                                ]),
                            ),
                            file=output_file,
                        )

                    if cfg.generation.print_step:
                        print(
                            "I-{}\t{}".format(sample_id, hypo["steps"]),
                            file=output_file,
                        )

                    if cfg.generation.retain_iter_history:
                        for step, h in enumerate(hypo["history"]):
                            _, h_str, _ = utils.post_process_prediction(
                                hypo_tokens=h["tokens"].int().cpu(),
                                src_str=src_str,
                                alignment=None,
                                align_dict=None,
                                tgt_dict=tgt_dict,
                                remove_bpe=None,
                            )
                            print(
                                "E-{}_{}\t{}".format(sample_id, step, h_str),
                                file=output_file,
                            )

                # Score only the top hypothesis
                if has_target and j == 0:
                    if align_dict is not None or cfg.common_eval.post_process is not None:
                        # Convert back to tokens for evaluation with unk replacement and/or without BPE
                        target_tokens = tgt_dict.encode_line(
                            target_str, add_if_not_exist=True)
                        hypo_tokens = tgt_dict.encode_line(
                            detok_hypo_str, add_if_not_exist=True)
                    if hasattr(scorer, "add_string"):
                        scorer.add_string(target_str, detok_hypo_str)
                    else:
                        scorer.add(target_tokens, hypo_tokens)

        wps_meter.update(num_generated_tokens)
        progress.log({"wps": round(wps_meter.avg)})
        num_sentences += (sample["nsentences"]
                          if "nsentences" in sample else sample["id"].numel())

    logger.info("NOTE: hypothesis and token scores are output in base 2")
    logger.info(
        "Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)"
        .format(
            num_sentences,
            gen_timer.n,
            gen_timer.sum,
            num_sentences / gen_timer.sum,
            1.0 / gen_timer.avg,
        ))
    if has_target:
        if cfg.bpe and not cfg.generation.sacrebleu:
            if cfg.common_eval.post_process:
                logger.warning(
                    "BLEU score is being computed by splitting detokenized string on spaces, this is probably not what you want. Use --sacrebleu for standard 13a BLEU tokenization"
                )
            else:
                logger.warning(
                    "If you are using BPE on the target side, the BLEU score is computed on BPE tokens, not on proper words.  Use --sacrebleu for standard 13a BLEU tokenization"
                )
        # use print to be consistent with other main outputs: S-, H-, T-, D- and so on
        print(
            "Generate {} with beam={}: {}".format(cfg.dataset.gen_subset,
                                                  cfg.generation.beam,
                                                  scorer.result_string()),
            file=output_file,
        )

    return scorer
Beispiel #11
0
def main(args):
    utils.import_user_module(args)

    if args.buffer_size < 1:
        args.buffer_size = 1
    if args.max_tokens is None and args.max_sentences is None:
        args.max_sentences = 1

    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert not args.max_sentences or args.max_sentences <= args.buffer_size, \
        '--max-sentences/--batch-size cannot be larger than --buffer-size'

    logger.info(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Setup task, e.g., translation
    ckpt = torch.load(args.path)
    task = tasks.setup_task(ckpt['args'])
    model = task.build_model(ckpt['args'])

    criterion = task.build_criterion(ckpt['args'])
    assert isinstance(criterion, LabelSmoothedCrossEntropyModularCriterion)
    criterion.eval()

    # Load ensemble
    logger.info('loading model(s) from {}'.format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        args.path.split(os.pathsep),
        arg_overrides=eval(args.model_overrides),
        task=task,
    )

    # Set dictionaries
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Initialize generator
    generator = task.build_generator(models, args)

    # Handle tokenization and BPE
    tokenizer = encoders.build_tokenizer(args)
    bpe = encoders.build_bpe(args)

    def encode_fn(x):
        if tokenizer is not None:
            x = tokenizer.encode(x)
        if bpe is not None:
            x = bpe.encode(x)
        return x

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    max_positions = utils.resolve_max_positions(
        task.max_positions(),
        *[model.max_positions() for model in models]
    )

    if args.buffer_size > 1:
        logger.info('Sentence buffer size: %s', args.buffer_size)
    logger.info('NOTE: hypothesis and token scores are output in base 2')
    logger.info('Type the input sentence and press return:')
    start_id = 0
    for inputs in buffered_read(args.input, args.buffer_size):
        results = []
        for sample in make_batches(inputs, args, task, max_positions, encode_fn):
            sample = utils.move_to_cuda(sample) if use_cuda else sample

            with torch.no_grad():
                assert len(models) == 1

                selections = []
                for model in models:
                    if (
                            args.fixed_encoder_selection is not None
                            or args.fixed_decoder_selection is not None
                        ):
                        selection = {
                            'encoder' : None,
                            'decoder' : None,
                        }
                        if args.fixed_encoder_selection is not None:
                            sel = torch.tensor(eval(args.fixed_encoder_selection))
                            selection['encoder'] = sel.repeat(sample['id'].size(0), 1)
                        if args.fixed_decoder_selection is not None:
                            sel = torch.tensor(eval(args.fixed_decoder_selection))
                            selection['decoder'] = sel.repeat(sample['id'].size(0), 1)
                    else:
                        # 1. Compute outputs for every ctrl selection
                        sampled_outputs = criterion.sample_outputs(model, sample)

                        # 2. Take selection with the lowest loss (given true predictions)
                        selection = criterion.compute_best_selection(model, sampled_outputs, sample)
                    selections.append(selection)

                # 3. Use the best selection to predict output in the inference mode
                translations = generator.generate(models, sample, selections)

                for i, (id, hypos) in enumerate(zip(sample['id'].tolist(), translations)):
                    src_tokens_i = utils.strip_pad(sample['net_input']['src_tokens'][i], tgt_dict.pad())
                    results.append((start_id + id, src_tokens_i, hypos))

        # sort output to match input order
        for id, src_tokens, hypos in sorted(results, key=lambda x: x[0]):
            if src_dict is not None:
                src_str = src_dict.string(src_tokens, args.remove_bpe)
                print('S-{}\t{}'.format(id, src_str))

            # Process top predictions
            for hypo in hypos[:min(len(hypos), args.nbest)]:
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'],
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=args.remove_bpe,
                )
                detok_hypo_str = decode_fn(hypo_str)
                score = hypo['score'] / math.log(2)  # convert to base 2
                # original hypothesis (after tokenization and BPE)
                print('H-{}\t{}\t{}'.format(id, score, hypo_str))
                # detokenized hypothesis
                print('D-{}\t{}\t{}'.format(id, score, detok_hypo_str))
                print('P-{}\t{}'.format(
                    id,
                    ' '.join(map(
                        lambda x: '{:.4f}'.format(x),
                        # convert from base e to base 2
                        hypo['positional_scores'].div_(math.log(2)).tolist(),
                    ))
                ))
                if args.print_alignment:
                    alignment_str = " ".join(["{}-{}".format(src, tgt) for src, tgt in alignment])
                    print('A-{}\t{}'.format(
                        id,
                        alignment_str
                    ))
                if 'enc_selection' in hypo:
                    print('Menc-{}\t{}'.format(id, hypo['enc_selection']))
                if 'dec_selection' in hypo:
                    print('Mdec-{}\t{}'.format(id, hypo['dec_selection']))
                if args.print_attn_confidence:
                    print('C-{}\t{}'.format(id, hypo['enc_self_attn_conf']))

        # update running id counter
        start_id += len(inputs)
Beispiel #12
0
 def build_tokenizer(self, args):
     logger.info(f"pre-tokenizer: {self.data_cfg.pre_tokenizer}")
     return encoders.build_tokenizer(
         Namespace(**self.data_cfg.pre_tokenizer))