Beispiel #1
0
    def load_checkpoint(
        self,
        filename,
        reset_optimizer=False,
        reset_lr_scheduler=False,
        optimizer_overrides=None,
        reset_meters=False,
    ):
        """Load all training state from a checkpoint file."""
        extra_state, self._optim_history, last_optim_state = None, [], None

        bexists = PathManager.isfile(filename)
        if bexists:
            state = checkpoint_utils.load_checkpoint_to_cpu(filename)

            # load model parameters
            try:
                self.get_model().load_state_dict(state["model"],
                                                 strict=True,
                                                 args=self.args)
                if utils.has_parameters(self.get_criterion()):
                    self.get_criterion().load_state_dict(state["criterion"],
                                                         strict=True)
            except Exception:
                raise Exception(
                    "Cannot load model parameters from checkpoint {}; "
                    "please ensure that the architectures match.".format(
                        filename))

            extra_state = state["extra_state"]
            self._optim_history = state["optimizer_history"]
            last_optim_state = state.get("last_optimizer_state", None)

        if last_optim_state is not None and not reset_optimizer:
            # rebuild optimizer after loading model, since params may have changed
            self._build_optimizer()

            # only reload optimizer and lr_scheduler if they match
            last_optim = self._optim_history[-1]
            assert (
                last_optim["criterion_name"] ==
                self.get_criterion().__class__.__name__
            ), "Criterion does not match; please reset the optimizer (--reset-optimizer)."
            assert (
                last_optim["optimizer_name"] ==
                self.optimizer.__class__.__name__
            ), "Optimizer does not match; please reset the optimizer (--reset-optimizer)."

            if not reset_lr_scheduler:
                self.lr_scheduler.load_state_dict(
                    last_optim["lr_scheduler_state"])
            self.optimizer.load_state_dict(last_optim_state,
                                           optimizer_overrides)

            self.set_num_updates(last_optim["num_updates"])

        if extra_state is not None:
            epoch = extra_state["train_iterator"]["epoch"]
            logger.info("loaded checkpoint {} (epoch {} @ {} updates)".format(
                filename, epoch, self.get_num_updates()))

            self.lr_step(epoch)

            if "metrics" in extra_state and not reset_meters:
                metrics.load_state_dict(extra_state["metrics"])

                # reset TimeMeters, since their start times don't make sense anymore
                for meter in metrics.get_meters("default"):
                    if isinstance(meter, meters.TimeMeter):
                        meter.reset()
        else:
            logger.info("no existing checkpoint found {}".format(filename))

        return extra_state
Beispiel #2
0
    def train_step(self, samples, raise_oom=False):
        """Do forward, backward and parameter update."""
        self._set_seed()
        self.model.train()
        self.criterion.train()
        self.zero_grad()

        metrics.log_start_time("train_wall", priority=800, round=0)

        # forward and backward pass
        logging_outputs, sample_size, ooms = [], 0, 0
        for i, sample in enumerate(samples):
            sample, is_dummy_batch = self._prepare_sample(sample)

            def maybe_no_sync():
                """
                Whenever *samples* contains more than one mini-batch, we
                want to accumulate gradients locally and only call
                all-reduce in the last backwards pass.
                """
                if (
                    self.data_parallel_world_size > 1
                    and hasattr(self.model, "no_sync")
                    and i < len(samples) - 1
                ):
                    return self.model.no_sync()
                else:
                    return contextlib.ExitStack()  # dummy contextmanager

            try:
                with maybe_no_sync():
                    # forward and backward
                    loss, sample_size_i, logging_output = self.task.train_step(
                        sample=sample,
                        model=self.model,
                        criterion=self.criterion,
                        optimizer=self.optimizer,
                        update_num=self.get_num_updates(),
                        ignore_grad=is_dummy_batch,
                    )
                    del loss

                logging_outputs.append(logging_output)
                sample_size += sample_size_i

                # emptying the CUDA cache after the first step can
                # reduce the chance of OOM
                if self.cuda and self.get_num_updates() == 0:
                    torch.cuda.empty_cache()
            except RuntimeError as e:
                if "out of memory" in str(e):
                    self._log_oom(e)
                    if raise_oom:
                        raise e
                    logger.warning(
                        "attempting to recover from OOM in forward/backward pass"
                    )
                    ooms += 1
                    self.zero_grad()
                    if self.cuda:
                        torch.cuda.empty_cache()
                    if self.cfg.distributed_training.distributed_world_size == 1:
                        return None
                else:
                    raise e

            if self.tpu and i < len(samples) - 1:
                # tpu-comment: every XLA operation before marking step is
                # appended to the IR graph, and processing too many batches
                # before marking step can lead to OOM errors.
                # To handle gradient accumulation use case, we explicitly
                # mark step here for every forward pass without a backward pass
                import torch_xla.core.xla_model as xm

                xm.mark_step()

        if is_dummy_batch:
            if torch.is_tensor(sample_size):
                sample_size.zero_()
            else:
                sample_size *= 0.0

        if torch.is_tensor(sample_size):
            sample_size = sample_size.float()
        else:
            sample_size = float(sample_size)

        # gather logging outputs from all replicas
        if self._sync_stats():
            train_time = self._local_cumulative_training_time()
            logging_outputs, (
                sample_size,
                ooms,
                total_train_time,
            ) = self._aggregate_logging_outputs(
                logging_outputs,
                sample_size,
                ooms,
                train_time,
                ignore=is_dummy_batch,
            )
            self._cumulative_training_time = (
                total_train_time / self.data_parallel_world_size
            )

        overflow = False
        try:
            with torch.autograd.profiler.record_function("reduce-grads"):
                self.optimizer.all_reduce_grads(self.model)
                if utils.has_parameters(self.criterion):
                    self.optimizer.all_reduce_grads(self.criterion)

            with torch.autograd.profiler.record_function("multiply-grads"):
                # multiply gradients by (data_parallel_size / sample_size) since
                # DDP already normalizes by the number of data parallel workers.
                # Thus we get (sum_of_gradients / sample_size) at the end.
                if not self.cfg.optimization.use_bmuf:
                    self.optimizer.multiply_grads(
                        self.data_parallel_world_size / sample_size
                    )
                elif sample_size > 0:  # BMUF needs to check sample size
                    num = self.data_parallel_world_size if self._sync_stats() else 1
                    self.optimizer.multiply_grads(num / sample_size)

            with torch.autograd.profiler.record_function("clip-grads"):
                # clip grads
                grad_norm = self.clip_grad_norm(self.cfg.optimization.clip_norm)

            # check that grad norms are consistent across workers
            # on tpu check tensor is slow
            if not self.tpu:
                if (
                    not self.cfg.optimization.use_bmuf
                    and self.cfg.distributed_training.distributed_wrapper != "SlowMo"
                ):
                    self._check_grad_norms(grad_norm)
                if not torch.isfinite(grad_norm).all():
                    # check local gradnorm single GPU case, trigger NanDetector
                    raise FloatingPointError("gradients are Nan/Inf")

            with torch.autograd.profiler.record_function("optimizer"):
                # take an optimization step
                self.task.optimizer_step(
                    self.optimizer, model=self.model, update_num=self.get_num_updates()
                )

        except FloatingPointError:
            # re-run the forward and backward pass with hooks attached to print
            # out where it fails
            self.zero_grad()
            with NanDetector(self.get_model()):
                for _, sample in enumerate(samples):
                    sample, _ = self._prepare_sample(sample)
                    self.task.train_step(
                        sample,
                        self.model,
                        self.criterion,
                        self.optimizer,
                        self.get_num_updates(),
                        ignore_grad=False,
                    )
            raise
        except OverflowError as e:
            overflow = True
            logger.info("NOTE: overflow detected, " + str(e))
            grad_norm = torch.tensor(0.0).cuda()
            self.zero_grad()
        except RuntimeError as e:
            if "out of memory" in str(e):
                self._log_oom(e)
                logger.error("OOM during optimization, irrecoverable")
            raise e

        # Some distributed wrappers (e.g., SlowMo) need access to the optimizer after the step
        if hasattr(self.model, "perform_additional_optimizer_actions"):
            if hasattr(self.optimizer, "fp32_params"):
                self.model.perform_additional_optimizer_actions(
                    self.optimizer.optimizer, self.optimizer.fp32_params
                )
            else:
                self.model.perform_additional_optimizer_actions(
                    self.optimizer.optimizer
                )

        logging_output = None
        if (
            not overflow
            or self.cfg.distributed_training.distributed_wrapper == "SlowMo"
        ):
            self.set_num_updates(self.get_num_updates() + 1)

            if self.tpu:
                # mark step on TPUs
                import torch_xla.core.xla_model as xm

                xm.mark_step()

                # only log stats every log_interval steps
                # this causes wps to be misreported when log_interval > 1
                logging_output = {}
                if self.get_num_updates() % self.cfg.common.log_interval == 0:
                    # log memory usage
                    mem_info = xm.get_memory_info(self.device)
                    gb_free = mem_info["kb_free"] / 1024 / 1024
                    gb_total = mem_info["kb_total"] / 1024 / 1024
                    metrics.log_scalar(
                        "gb_free",
                        gb_free,
                        priority=1500,
                        round=1,
                        weight=0,
                    )
                    metrics.log_scalar(
                        "gb_total",
                        gb_total,
                        priority=1600,
                        round=1,
                        weight=0,
                    )

                    logging_output = self._reduce_and_log_stats(
                        logging_outputs,
                        sample_size,
                        grad_norm,
                    )

                # log whenever there's an XLA compilation, since these
                # slow down training and may indicate opportunities for
                # optimization
                self._check_xla_compilation()
            else:
                # log stats
                logging_output = self._reduce_and_log_stats(
                    logging_outputs,
                    sample_size,
                    grad_norm,
                )

                # clear CUDA cache to reduce memory fragmentation
                if (
                    self.cuda
                    and self.cfg.common.empty_cache_freq > 0
                    and (
                        (self.get_num_updates() + self.cfg.common.empty_cache_freq - 1)
                        % self.cfg.common.empty_cache_freq
                    )
                    == 0
                ):
                    torch.cuda.empty_cache()

        if self.cfg.common.fp16:
            metrics.log_scalar(
                "loss_scale",
                self.optimizer.scaler.loss_scale,
                priority=700,
                round=4,
                weight=0,
            )

        metrics.log_stop_time("train_wall")
        return logging_output
Beispiel #3
0
    def load_checkpoint(
        self,
        filename,
        reset_optimizer=False,
        reset_lr_scheduler=False,
        optimizer_overrides=None,
        reset_meters=False,
    ):
        """Load all training state from a checkpoint file."""
        extra_state, self._optim_history, last_optim_state = None, [], None

        if os.path.exists(filename):
            state = checkpoint_utils.load_checkpoint_to_cpu(filename)

            # load model parameters
            try:
                missing_keys, _ = self.get_model().load_state_dict(
                    state['model'], strict=False)
                if len(missing_keys) > 0:
                    print('Find missing keys when loading: {}'.format(
                        missing_keys))
                if utils.has_parameters(self.get_criterion()):
                    self.get_criterion().load_state_dict(state['criterion'],
                                                         strict=True)
            except Exception:
                raise Exception(
                    'Cannot load model parameters from checkpoint {}; '
                    'please ensure that the architectures match.'.format(
                        filename))

            extra_state = state['extra_state']
            self._optim_history = state['optimizer_history']
            last_optim_state = state.get('last_optimizer_state', None)

        if last_optim_state is not None and not reset_optimizer:
            # rebuild optimizer after loading model, since params may have changed
            self._build_optimizer()

            # only reload optimizer and lr_scheduler if they match
            last_optim = self._optim_history[-1]
            assert last_optim['criterion_name'] == self.get_criterion().__class__.__name__, \
                'Criterion does not match; please reset the optimizer (--reset-optimizer).'
            assert last_optim['optimizer_name'] == self.optimizer.__class__.__name__, \
                'Optimizer does not match; please reset the optimizer (--reset-optimizer).'

            if not reset_lr_scheduler:
                self.lr_scheduler.load_state_dict(
                    last_optim['lr_scheduler_state'])
            self.optimizer.load_state_dict(last_optim_state,
                                           optimizer_overrides)

            self.set_num_updates(last_optim['num_updates'])

        if extra_state is not None:
            epoch = extra_state['train_iterator']['epoch']
            print('| loaded checkpoint {} (epoch {} @ {} updates)'.format(
                filename, epoch, self.get_num_updates()))

            self.lr_step(epoch)

            if 'train_meters' in extra_state and not reset_meters:
                self.meters.update(extra_state['train_meters'])
                del extra_state['train_meters']

                # reset TimeMeters, since their start times don't make sense anymore
                for meter in self.meters.values():
                    if isinstance(meter, TimeMeter):
                        meter.reset()
        else:
            print('| no existing checkpoint found {}'.format(filename))

        return extra_state
Beispiel #4
0
    def load_checkpoint(
        self,
        filename,
        reset_optimizer=False,
        reset_lr_scheduler=False,
        optimizer_overrides=None,
        reset_meters=False,
    ):
        """
        Load all training state from a checkpoint file.
        rank = 0 will load the checkpoint, and then broadcast it to all
        other ranks.
        """
        extra_state, self._optim_history, last_optim_state = None, [], None

        logger.info(f"Preparing to load checkpoint {filename}")
        bexists = PathManager.isfile(filename)
        if bexists:
            load_on_all_ranks = (
                self.cfg.checkpoint.load_checkpoint_on_all_dp_ranks
                # TPUs don't support broadcast yet, so load checkpoints
                # on every worker for now
                or self.tpu
            )

            if load_on_all_ranks or self.data_parallel_rank == 0:
                state = checkpoint_utils.load_checkpoint_to_cpu(filename)
                last_optim_state = state.get("last_optimizer_state", None)

                # If doing zero_sharding, do not broadcast global optimizer
                # state. Later we will broadcast sharded states to each rank
                # to avoid memory from exploding.
                if (
                    not load_on_all_ranks
                    and self.cfg.distributed_training.zero_sharding == "os"
                    and "last_optimizer_state" in state
                    and self.data_parallel_world_size > 1
                ):
                    state["last_optimizer_state"] = "SHARDED"
            else:
                last_optim_state = None
                state = None

            if self.data_parallel_world_size > 1 and not load_on_all_ranks:
                state = distributed_utils.broadcast_object(
                    state,
                    src_rank=0,
                    group=self.data_parallel_process_group,
                    dist_device=self.device,
                )
                if self.data_parallel_rank > 0:
                    last_optim_state = state.get("last_optimizer_state", None)

            # load model parameters
            try:
                self.get_model().load_state_dict(
                    state["model"], strict=True, model_cfg=self.cfg.model
                )
                if utils.has_parameters(self.get_criterion()):
                    self.get_criterion().load_state_dict(
                        state["criterion"], strict=True
                    )
            except Exception:
                raise Exception(
                    "Cannot load model parameters from checkpoint {}; "
                    "please ensure that the architectures match.".format(filename)
                )
            extra_state = state["extra_state"]
            self._optim_history = state["optimizer_history"]

        if last_optim_state is not None and not reset_optimizer:
            # rebuild optimizer after loading model, since params may have changed
            self._build_optimizer()

            # only reload optimizer and lr_scheduler if they match
            last_optim = self._optim_history[-1]
            assert (
                last_optim["criterion_name"] == self.get_criterion().__class__.__name__
            ), "Criterion does not match; please reset the optimizer (--reset-optimizer)."
            assert (
                last_optim["optimizer_name"] == self.optimizer.__class__.__name__
            ), "Optimizer does not match; please reset the optimizer (--reset-optimizer)."

            if not reset_lr_scheduler:
                self.lr_scheduler.load_state_dict(last_optim["lr_scheduler_state"])

            if not load_on_all_ranks and self.data_parallel_world_size > 1:
                last_optim_state = self.optimizer.broadcast_global_state_dict(
                    last_optim_state
                )
            self.optimizer.load_state_dict(last_optim_state, optimizer_overrides)

            self.set_num_updates(last_optim["num_updates"])

        if extra_state is not None:
            epoch = extra_state["train_iterator"]["epoch"]

            if "previous_training_time" in extra_state:
                self._previous_training_time = extra_state["previous_training_time"]
                self._start_time = time.time()

            self.lr_step(epoch)

            if "metrics" in extra_state and not reset_meters:
                metrics.load_state_dict(extra_state["metrics"])

                # reset TimeMeters, since their start times don't make sense anymore
                for meter in metrics.get_meters("default"):
                    if isinstance(meter, meters.TimeMeter):
                        meter.reset()

            logger.info(
                "Loaded checkpoint {} (epoch {} @ {} updates)".format(
                    filename, epoch, self.get_num_updates()
                )
            )

        else:
            logger.info("No existing checkpoint found {}".format(filename))

        return extra_state