Beispiel #1
0
    def test_binary(self):
        ds = datasets.SyntheticDataset(128, 2000, 2000, 200)

        d = ds.d
        xt = ds.get_train()
        xq = ds.get_queries()
        xb = ds.get_database()

        # define alternative quantizer on the 20 first dims of vectors (will be in float)
        km = faiss.Kmeans(20, 50)
        km.train(xt[:, :20].copy())
        alt_quantizer = km.index

        binarizer = faiss.index_factory(d, "ITQ,LSHt")
        binarizer.train(xt)

        xb_bin = binarizer.sa_encode(xb)
        xq_bin = binarizer.sa_encode(xq)

        index = faiss.index_binary_factory(d, "BIVF200")

        fake_centroids = np.zeros((index.nlist, index.d // 8), dtype="uint8")
        index.quantizer.add(fake_centroids)
        index.is_trained = True

        # add elements xb
        a = alt_quantizer.search(xb[:, :20].copy(), 1)[1].ravel()
        ivf_tools.add_preassigned(index, xb_bin, a)

        # search elements xq, increase nprobe, check 4 first results w/ groundtruth
        prev_inter_perf = 0
        for nprobe in 1, 10, 20:

            index.nprobe = nprobe
            a = alt_quantizer.search(xq[:, :20].copy(), index.nprobe)[1]
            D, I = ivf_tools.search_preassigned(index, xq_bin, 4, a)
            inter_perf = (I == ds.get_groundtruth()[:, :4]).sum() / I.size
            self.assertTrue(inter_perf >= prev_inter_perf)
            prev_inter_perf = inter_perf

        # test range search

        index.nprobe = 20

        a = alt_quantizer.search(xq[:, :20].copy(), index.nprobe)[1]

        # just to find a reasonable radius
        D, I = ivf_tools.search_preassigned(index, xq_bin, 4, a)
        radius = int(D.max() + 1)

        lims, DR, IR = ivf_tools.range_search_preassigned(
            index, xq_bin, radius, a)

        # with that radius the k-NN results are a subset of the range search results
        for q in range(len(xq)):
            l0, l1 = lims[q], lims[q + 1]
            self.assertTrue(set(I[q]) <= set(IR[l0:l1]))
Beispiel #2
0
    def test_float(self):
        ds = datasets.SyntheticDataset(128, 2000, 2000, 200)

        d = ds.d
        xt = ds.get_train()
        xq = ds.get_queries()
        xb = ds.get_database()

        # define alternative quantizer on the 20 first dims of vectors
        km = faiss.Kmeans(20, 50)
        km.train(xt[:, :20].copy())
        alt_quantizer = km.index

        index = faiss.index_factory(d, "IVF50,PQ16np")
        index.by_residual = False

        # (optional) fake coarse quantizer
        fake_centroids = np.zeros((index.nlist, index.d), dtype="float32")
        index.quantizer.add(fake_centroids)

        # train the PQ part
        index.train(xt)

        # add elements xb
        a = alt_quantizer.search(xb[:, :20].copy(), 1)[1].ravel()
        ivf_tools.add_preassigned(index, xb, a)

        # search elements xq, increase nprobe, check 4 first results w/ groundtruth
        prev_inter_perf = 0
        for nprobe in 1, 10, 20:

            index.nprobe = nprobe
            a = alt_quantizer.search(xq[:, :20].copy(), index.nprobe)[1]
            D, I = ivf_tools.search_preassigned(index, xq, 4, a)
            inter_perf = faiss.eval_intersection(I,
                                                 ds.get_groundtruth()[:, :4])
            self.assertTrue(inter_perf >= prev_inter_perf)
            prev_inter_perf = inter_perf

        # test range search

        index.nprobe = 20

        a = alt_quantizer.search(xq[:, :20].copy(), index.nprobe)[1]

        # just to find a reasonable radius
        D, I = ivf_tools.search_preassigned(index, xq, 4, a)
        radius = D.max() * 1.01

        lims, DR, IR = ivf_tools.range_search_preassigned(index, xq, radius, a)

        # with that radius the k-NN results are a subset of the range search results
        for q in range(len(xq)):
            l0, l1 = lims[q], lims[q + 1]
            self.assertTrue(set(I[q]) <= set(IR[l0:l1]))