Beispiel #1
0
def test_interpretation_plot_q_dqn_returns():
    data = MDPDataBunch.from_env('maze-random-5x5-v0', render='human')
    model = DQN(data)
    learn = AgentLearner(data, model)
    learn.fit(5)
    interp = AgentInterpretationAlpha(learn)
    interp.plot_heatmapped_episode(2)
Beispiel #2
0
def test_interpretation_plot_sequence():
    data = MDPDataBunch.from_env('maze-random-5x5-v0',
                                 render='human',
                                 max_steps=1000)
    model = DQN(data)
    learn = AgentLearner(data, model)

    epochs = 20

    callbacks = learn.model.callbacks  # type: Collection[LearnerCallback]
    [c.on_train_begin(learn=learn, n_epochs=epochs) for c in callbacks]
    for epoch in range(epochs):
        [c.on_epoch_begin(epoch=epoch) for c in callbacks]
        learn.model.train()
        counter = 0
        for element in learn.data.train_dl:
            learn.data.train_ds.actions = learn.predict(element)
            [c.on_step_end(learn=learn) for c in callbacks]

            counter += 1
            # if counter % 100 == 0:# or counter == 0:
        interp = AgentInterpretationAlpha(learn, ds_type=DatasetType.Train)
        interp.plot_heatmapped_episode(epoch)

        [c.on_epoch_end() for c in callbacks]
    [c.on_train_end() for c in callbacks]
Beispiel #3
0
def test_interpretation_heatmap():
    data = MDPDataBunch.from_env('maze-random-5x5-v0', render='human')
    model = DQN(data)
    learn = AgentLearner(data, model)

    epochs = 10

    callbacks = learn.model.callbacks  # type: Collection[LearnerCallback]
    [c.on_train_begin(learn=learn, n_epochs=epochs) for c in callbacks]
    for epoch in range(epochs):
        [c.on_epoch_begin(epoch=epoch) for c in callbacks]
        learn.model.train()
        for element in learn.data.train_dl:
            learn.data.train_ds.actions = learn.predict(element)
            [c.on_step_end(learn=learn) for c in callbacks]
        [c.on_epoch_end() for c in callbacks]

        # For now we are going to avoid executing learner_callbacks here.
        learn.model.eval()
        for element in learn.data.valid_dl:
            learn.data.valid_ds.actions = learn.predict(element)

        if epoch % 1 == 0:
            interp = AgentInterpretationAlpha(learn)
            interp.plot_heatmapped_episode(epoch)
    [c.on_train_end() for c in callbacks]
def test_fit_function_dqn():
    data = MDPDataBunch.from_env('maze-random-5x5-v0',
                                 render='human',
                                 max_steps=1000)
    model = DQN(data, memory=PriorityExperienceReplay(1000))
    learn = AgentLearner(data, model)
    learn.fit(5)
def test_priority_experience_replay():
    data = MDPDataBunch.from_env('maze-random-5x5-v0',
                                 render='human',
                                 max_steps=1000)
    model = FixedTargetDQN(data, memory=PriorityExperienceReplay(1000))
    learn = AgentLearner(data, model)
    learn.fit(5)
def test_double_dueling_dqn_model_maze():
    data = MDPDataBunch.from_env('maze-random-5x5-v0',
                                 render='human',
                                 max_steps=1000)
    model = DoubleDuelingDQN(data)
    learn = AgentLearner(data, model)

    learn.fit(5)
def test_basic_dqn_model_maze():
    data = MDPDataBunch.from_env('maze-random-5x5-v0',
                                 render='human',
                                 max_steps=200)
    model = DQN(data)
    learn = AgentLearner(data, model)

    learn.fit(5)
def test_fixed_target_dqn_model_maze():
    print('\n')
    data = MDPDataBunch.from_env('maze-random-5x5-v0',
                                 render='human',
                                 max_steps=1000)
    model = FixedTargetDQN(data)
    learn = AgentLearner(data, model)

    learn.fit(5)
Beispiel #9
0
def test_interpretation_plot_q_ddpg_returns():
    data = MDPDataBunch.from_env('Pendulum-v0', render='human')
    # data = MDPDataBunch.from_env('MountainCarContinuous-v0', render='human')
    model = DDPG(data, batch=8)
    learn = AgentLearner(data, model)

    learn.fit(5)
    interp = AgentInterpretationAlpha(learn)
    interp.plot_heatmapped_episode(2)
Beispiel #10
0
def test_epsilon():
    data = MDPDataBunch.from_env('maze-random-5x5-v0',
                                 render='human',
                                 max_steps=100,
                                 add_valid=False)
    model = FixedTargetDQN(data,
                           batch_size=64,
                           max_episodes=100,
                           copy_over_frequency=4)
    learn = AgentLearner(data, model)

    learn.fit(20)
def test_ddpg():
    data = MDPDataBunch.from_env('Pendulum-v0', render='human')
    # data = MDPDataBunch.from_env('MountainCarContinuous-v0', render='human')
    model = DDPG(data, batch=8)
    learn = AgentLearner(data, model)
    learn.fit(450)
def test_fit_function_ddpg():
    data = MDPDataBunch.from_env('Pendulum-v0', render='human', max_steps=1000)
    model = DDPG(data, memory=PriorityExperienceReplay(1000))
    learn = AgentLearner(data, model)
    learn.fit(5)