def on_epoch_end(self, pbar, epoch, last_metrics, *args, **kwargs): "Put the various losses in the recorder and show a sample image." """ data = self.learn.data inputBPre = torch.unbind(self.last_input[1], dim=0) aToA = im.Image(self.last_gen[0]/2+0.5) bToB = im.Image(self.last_gen[1]/2+0.5) aToB = im.Image(self.last_gen[2]/2+0.5) bToA = im.Image(self.last_gen[3]/2+0.5) self.imgs.append(aToA) self.imgs.append(aToB) self.imgs.append(bToB) self.imgs.append(bToA) self.titles.append(f'Epoch {epoch}-A to A') self.titles.append(f'Epoch {epoch}-A to B') self.titles.append(f'Epoch {epoch}-B to B') self.titles.append(f'Epoch {epoch}-B to A') pbar.show_imgs(self.imgs, self.titles) """ # pdb.set_trace() orig, orig2 = self.last_input orig.detach() orig2.detach() orig_cont, orig_hooks = self.content_encoder(orig) orig_style = self.style_encoder(orig) orig2_cont, orig2_hooks = self.content_encoder(orig2) orig2_style = self.style_encoder(orig2) one2two = self.decoder(orig_cont, orig2_style, orig_hooks).detach() two2one = self.decoder(orig2_cont, orig_style, orig2_hooks).detach() o1 = im.Image(orig[0] / 2 + 0.5) o2 = im.Image(orig2[0] / 2 + 0.5) o2t = im.Image(one2two[0] / 2 + 0.5) t2o = im.Image(two2one[0] / 2 + 0.5) self.imgs.append(o1) self.imgs.append(o2) self.imgs.append(o2t) self.imgs.append(t2o) self.titles.append(f'Epoch {epoch}-o1') self.titles.append(f'Epoch {epoch}-o2') self.titles.append(f'Epoch {epoch}-onetrans') self.titles.append(f'Epoch {epoch}-twotrans') pbar.show_imgs(self.imgs, self.titles) return
def load_image(image_file): pil_img = PIL.Image.open(image_file) img = pil_img.convert('RGB') img = image.pil2tensor(img, np.float32).div_(255) img = image.Image(img) return img, np.asarray(pil_img)
def process_image(self, img_stream): img = (PIL.Image.open(img_stream)).convert(mode='RGB') img = self.transforms(img) img = image_func.Image(img) img = img.set_sample() return img
def to_one(self): tensor = 0.5 + torch.cat(self.data, 2) / 2 return im.Image(tensor)
st.write('## This is ',str(pred_class).capitalize(),' with probablity of ',pred_prob,'%') options = st.radio('',('Select Image','Enter Image URL','Upload an image')) #Select image if options =='Select Image': static = os.listdir('static') test_image = st.selectbox('Please select a image:',static) file_path = 'static/' + test_image pil_img =Image.open(file_path) #read the image img = pil_img.convert('RGB') img = image.pil2tensor(img,np.float32).div_(224) img = image.Image(img) #display image display_img = mpimg.imread(file_path) st.image(pil_img,use_column_width=True) predict(img) #Image URL if options == 'Enter Image URL': url = st.text_input('Enter Image URL') if url != '':