def sepconv2d(cin, cout=None, ksize=3, stride=1, padding=None, affine=True): if cout is None: cout = cin if padding is None: padding = ksize // 2 layer = nn.Sequential( nn.ReLU(inplace=False), init_default( nn.Conv2d(cin, cin, ksize, stride=stride, padding=padding, groups=cin, bias=False), nn.init.kaiming_normal_), init_default(nn.Conv2d(cin, cin, 1, padding=0, bias=False), nn.init.kaiming_normal_), nn.BatchNorm2d(cin, affine=affine), nn.ReLU(inplace=False), init_default( nn.Conv2d(cin, cin, ksize, stride=1, padding=padding, groups=cin, bias=False), nn.init.kaiming_normal_), init_default(nn.Conv2d(cin, cout, 1, padding=0, bias=False), nn.init.kaiming_normal_), nn.BatchNorm2d(cout, affine=affine)) return layer
def __init__(self, num_classes=10): super(ConvNet, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2), nn.BatchNorm2d(16), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer2 = nn.Sequential( nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2), nn.BatchNorm2d(32), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.fc = nn.Linear(7 * 7 * 32, num_classes)
def conv2dpool(cin, cout, pool_type, bn=NormType.Batch): assert pool_type in ['avg', 'max'] if pool_type == 'max': return nn.Sequential( nn.MaxPool2d(2, stride=2), init_default(nn.Conv2d(cin, cout, 1, bias=False), nn.init.kaiming_normal_), batchnorm_2d(cout, norm_type=bn)) if pool_type == 'avg': return nn.Sequential( nn.AvgPool2d(2, stride=2, ceil_mode=True, count_include_pad=False), init_default(nn.Conv2d(cin, cout, 1, bias=False), nn.init.kaiming_normal_), batchnorm_2d(cout, norm_type=bn))
def conv2d(cin, cout=None, ksize=3, stride=1, padding=None, dilation=None, groups=None, use_relu=True, use_bn=True, bn=NormType.Batch, bias=False): if cout is None: cout = cin if padding is None: padding = ksize // 2 if dilation is None: dilation = 1 if groups is None: groups = 1 layer = [ init_default( nn.Conv2d(cin, cout, ksize, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias), nn.init.kaiming_normal_) ] if use_bn: layer.append(batchnorm_2d(cout, norm_type=bn)) if use_relu: layer.append(relu(True)) return nn.Sequential(*layer)
def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
def two_conv_pool(self, in_channels, f1, f2): s = nn.Sequential( nn.Conv2d(in_channels, f1, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(f1), nn.ReLU(inplace=True), nn.Conv2d(f1, f2, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(f2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), ) for m in s.children(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() return s
def stem_blk(cin, cout=None, ksize=3, stride=1, use_relu=True, use_bn=True, bn=NormType.Batch, bias=False, pool='avg'): if cout is None: cout = cin padding = ksize // 2 layer = [ init_default( nn.Conv2d(cin, cout, ksize, stride=stride, padding=padding, bias=bias), nn.init.kaiming_normal_) ] if use_bn: layer.append(batchnorm_2d(cout, norm_type=bn)) if use_relu: layer.append(relu(True)) if pool == 'max': layer.append(nn.MaxPool2d(2, stride=2)) if pool == 'avg': layer.append( nn.AvgPool2d(2, stride=2, ceil_mode=True, count_include_pad=False)) layer.append( init_default( nn.Conv2d(cout, cout * 2, ksize, stride=stride, padding=padding, bias=bias), nn.init.kaiming_normal_)) if use_bn: layer.append(batchnorm_2d(cout * 2, norm_type=bn)) if use_relu: layer.append(relu(True)) if pool == 'max': layer.append(nn.MaxPool2d(2, stride=2)) if pool == 'avg': layer.append( nn.AvgPool2d(2, stride=2, ceil_mode=True, count_include_pad=False)) return nn.Sequential(*layer)
def __init__(self, block, layers, num_classes=10, zero_init_residual=False): super(MyResNet, self).__init__() self.inplanes = 64 self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) self.classifier = nn.Sequential( nn.Dropout(p=0.5), nn.Linear(512 * block.expansion, 256), nn.BatchNorm1d(256), nn.ReLU(inplace=True), nn.Dropout(p=0.5), nn.Linear(256, num_classes), )
def conv(self, ni, nf): return nn.Conv2d(ni, nf, kernel_size=3, stride=2, padding=1)
def stem(self): return nn.Sequential(init_default(nn.Conv2d(3, self.channels, 3, padding=1, bias=False), nn.init.kaiming_normal_), nn.BatchNorm2d(self.channels))