Beispiel #1
0
def sepconv2d(cin, cout=None, ksize=3, stride=1, padding=None, affine=True):
    if cout is None: cout = cin
    if padding is None: padding = ksize // 2
    layer = nn.Sequential(
        nn.ReLU(inplace=False),
        init_default(
            nn.Conv2d(cin,
                      cin,
                      ksize,
                      stride=stride,
                      padding=padding,
                      groups=cin,
                      bias=False), nn.init.kaiming_normal_),
        init_default(nn.Conv2d(cin, cin, 1, padding=0, bias=False),
                     nn.init.kaiming_normal_),
        nn.BatchNorm2d(cin, affine=affine), nn.ReLU(inplace=False),
        init_default(
            nn.Conv2d(cin,
                      cin,
                      ksize,
                      stride=1,
                      padding=padding,
                      groups=cin,
                      bias=False), nn.init.kaiming_normal_),
        init_default(nn.Conv2d(cin, cout, 1, padding=0, bias=False),
                     nn.init.kaiming_normal_),
        nn.BatchNorm2d(cout, affine=affine))
    return layer
Beispiel #2
0
 def __init__(self, num_classes=10):
     super(ConvNet, self).__init__()
     self.layer1 = nn.Sequential(
         nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
         nn.BatchNorm2d(16),
         nn.ReLU(),
         nn.MaxPool2d(kernel_size=2, stride=2))
     self.layer2 = nn.Sequential(
         nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
         nn.BatchNorm2d(32),
         nn.ReLU(),
         nn.MaxPool2d(kernel_size=2, stride=2))
     self.fc = nn.Linear(7 * 7 * 32, num_classes)
Beispiel #3
0
def conv2dpool(cin, cout, pool_type, bn=NormType.Batch):
    assert pool_type in ['avg', 'max']
    if pool_type == 'max':
        return nn.Sequential(
            nn.MaxPool2d(2, stride=2),
            init_default(nn.Conv2d(cin, cout, 1, bias=False),
                         nn.init.kaiming_normal_),
            batchnorm_2d(cout, norm_type=bn))
    if pool_type == 'avg':
        return nn.Sequential(
            nn.AvgPool2d(2, stride=2, ceil_mode=True, count_include_pad=False),
            init_default(nn.Conv2d(cin, cout, 1, bias=False),
                         nn.init.kaiming_normal_),
            batchnorm_2d(cout, norm_type=bn))
Beispiel #4
0
def conv2d(cin,
           cout=None,
           ksize=3,
           stride=1,
           padding=None,
           dilation=None,
           groups=None,
           use_relu=True,
           use_bn=True,
           bn=NormType.Batch,
           bias=False):
    if cout is None: cout = cin
    if padding is None: padding = ksize // 2
    if dilation is None: dilation = 1
    if groups is None: groups = 1
    layer = [
        init_default(
            nn.Conv2d(cin,
                      cout,
                      ksize,
                      stride=stride,
                      padding=padding,
                      dilation=dilation,
                      groups=groups,
                      bias=bias), nn.init.kaiming_normal_)
    ]
    if use_bn: layer.append(batchnorm_2d(cout, norm_type=bn))
    if use_relu: layer.append(relu(True))
    return nn.Sequential(*layer)
Beispiel #5
0
def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return nn.Conv2d(in_planes,
                     out_planes,
                     kernel_size=1,
                     stride=stride,
                     bias=False)
Beispiel #6
0
def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes,
                     out_planes,
                     kernel_size=3,
                     stride=stride,
                     padding=1,
                     bias=False)
Beispiel #7
0
 def two_conv_pool(self, in_channels, f1, f2):
     s = nn.Sequential(
         nn.Conv2d(in_channels, f1, kernel_size=3, stride=1, padding=1),
         nn.BatchNorm2d(f1),
         nn.ReLU(inplace=True),
         nn.Conv2d(f1, f2, kernel_size=3, stride=1, padding=1),
         nn.BatchNorm2d(f2),
         nn.ReLU(inplace=True),
         nn.MaxPool2d(kernel_size=2, stride=2),
     )
     for m in s.children():
         if isinstance(m, nn.Conv2d):
             n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
             m.weight.data.normal_(0, math.sqrt(2. / n))
         elif isinstance(m, nn.BatchNorm2d):
             m.weight.data.fill_(1)
             m.bias.data.zero_()
     return s
Beispiel #8
0
def stem_blk(cin,
             cout=None,
             ksize=3,
             stride=1,
             use_relu=True,
             use_bn=True,
             bn=NormType.Batch,
             bias=False,
             pool='avg'):
    if cout is None: cout = cin
    padding = ksize // 2
    layer = [
        init_default(
            nn.Conv2d(cin,
                      cout,
                      ksize,
                      stride=stride,
                      padding=padding,
                      bias=bias), nn.init.kaiming_normal_)
    ]
    if use_bn: layer.append(batchnorm_2d(cout, norm_type=bn))
    if use_relu: layer.append(relu(True))
    if pool == 'max': layer.append(nn.MaxPool2d(2, stride=2))
    if pool == 'avg':
        layer.append(
            nn.AvgPool2d(2, stride=2, ceil_mode=True, count_include_pad=False))

    layer.append(
        init_default(
            nn.Conv2d(cout,
                      cout * 2,
                      ksize,
                      stride=stride,
                      padding=padding,
                      bias=bias), nn.init.kaiming_normal_))
    if use_bn: layer.append(batchnorm_2d(cout * 2, norm_type=bn))
    if use_relu: layer.append(relu(True))
    if pool == 'max': layer.append(nn.MaxPool2d(2, stride=2))
    if pool == 'avg':
        layer.append(
            nn.AvgPool2d(2, stride=2, ceil_mode=True, count_include_pad=False))
    return nn.Sequential(*layer)
Beispiel #9
0
    def __init__(self,
                 block,
                 layers,
                 num_classes=10,
                 zero_init_residual=False):
        super(MyResNet, self).__init__()
        self.inplanes = 64
        self.conv1 = nn.Conv2d(1,
                               64,
                               kernel_size=7,
                               stride=2,
                               padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight,
                                        mode='fan_out',
                                        nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)

        self.classifier = nn.Sequential(
            nn.Dropout(p=0.5),
            nn.Linear(512 * block.expansion, 256),
            nn.BatchNorm1d(256),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.5),
            nn.Linear(256, num_classes),
        )
Beispiel #10
0
 def conv(self, ni, nf):
     return nn.Conv2d(ni, nf, kernel_size=3, stride=2, padding=1)
Beispiel #11
0
 def stem(self):
     return nn.Sequential(init_default(nn.Conv2d(3, self.channels, 3, padding=1, bias=False),
                                       nn.init.kaiming_normal_),
                          nn.BatchNorm2d(self.channels))