Beispiel #1
0
    def get_problem(self,
                    read_inputs: bool = False,
                    auto_scaling: bool = False) -> FASTOADProblem:
        """
        Builds the OpenMDAO problem from current configuration.

        :param read_inputs: if True, the created problem will already be fed
                            with variables from the input file
        :param auto_scaling: if True, automatic scaling is performed for design
                             variables and constraints
        :return: the problem instance
        """
        if not self._conf_dict:
            raise RuntimeError("read configuration file first")

        problem = FASTOADProblem(self._build_model())

        problem.input_file_path = self.input_file_path
        problem.output_file_path = self.output_file_path

        driver = self._conf_dict.get(KEY_DRIVER, "")
        if driver:
            problem.driver = _om_eval(driver)

        if self.get_optimization_definition():
            self._add_constraints(problem.model, auto_scaling)
            self._add_objectives(problem.model)

        if read_inputs:
            problem.read_inputs()
            self._add_design_vars(problem.model, auto_scaling)

        return problem
def test_problem_read_inputs_before_setup(cleanup):
    """Tests what happens when reading inputs using existing XML with correct var"""

    problem = FASTOADProblem()
    problem.model.add_subsystem("sellar", Sellar(), promotes=["*"])

    problem.input_file_path = pth.join(DATA_FOLDER_PATH, "ref_inputs.xml")

    problem.read_inputs()
    problem.setup()
    problem.run_model()

    assert_allclose(problem.get_val(name="x"), 1.0)
    assert_allclose(problem.get_val(name="z", units="m**2"), [4.0, 3.0])
    assert_allclose(problem["f"], 21.7572, atol=1.0e-4)
def test_problem_read_inputs_with_nan_inputs(cleanup):
    """Tests that when reading inputs using existing XML with some nan values an exception is raised"""

    problem = FASTOADProblem()
    problem.model.add_subsystem("sellar", Sellar(), promotes=["*"])

    input_data_path = pth.join(DATA_FOLDER_PATH, "nan_inputs.xml")

    problem.input_file_path = pth.join(DATA_FOLDER_PATH, "nan_inputs.xml")

    with pytest.raises(FASTOpenMDAONanInInputFile) as exc_info:
        problem.read_inputs()
        assert exc_info.value.input_file_path == input_data_path
        assert exc_info.value.nan_variable_names == ["x"]

    problem.setup()

    with pytest.raises(FASTOpenMDAONanInInputFile) as exc_info:
        problem.read_inputs()
        assert exc_info.value.input_file_path == input_data_path
        assert exc_info.value.nan_variable_names == ["x"]
def test_problem_read_inputs_after_setup(cleanup):
    """Tests what happens when reading inputs using existing XML with correct var"""

    problem = FASTOADProblem()
    problem.model.add_subsystem("sellar", Sellar(), promotes=["*"])

    problem.input_file_path = pth.join(DATA_FOLDER_PATH, "ref_inputs.xml")

    problem.setup()

    assert problem.get_val(name="x") == [2.0]
    with pytest.raises(RuntimeError):
        # Several default values are defined for "z", thus OpenMDAO raises an error that
        # will be solved only after run_model() has been used.
        _ = problem.get_val(name="z", units="m**2")

    problem.read_inputs()

    problem.run_model()
    assert_allclose(problem.get_val(name="x"), 1.0)
    assert_allclose(problem.get_val(name="z", units="m**2"), [4.0, 3.0])
    assert_allclose(problem["f"], 21.7572, atol=1.0e-4)
def test_problem_with_case_recorder(cleanup):
    """Tests what happens when using a case recorder"""
    # Adding a case recorder may cause a crash in case of deepcopy.

    problem = FASTOADProblem()
    sellar = Sellar()
    sellar.nonlinear_solver = om.NonlinearBlockGS(
    )  # Solver that is compatible with deepcopy
    sellar.add_recorder(
        om.SqliteRecorder(pth.join(RESULTS_FOLDER_PATH, "cases.sql")))

    problem.model.add_subsystem("sellar", sellar, promotes=["*"])

    problem.input_file_path = pth.join(DATA_FOLDER_PATH, "ref_inputs.xml")

    problem.setup()
    problem.read_inputs()
    problem.run_model()

    assert_allclose(problem.get_val(name="x"), 1.0)
    assert_allclose(problem.get_val(name="z", units="m**2"), [4.0, 3.0])
    assert_allclose(problem["f"], 21.7572, atol=1.0e-4)
def test_problem_with_dynamically_shaped_inputs(cleanup):
    class MyComp1(om.ExplicitComponent):
        def setup(self):
            self.add_input("x", shape_by_conn=True, copy_shape="y")
            self.add_output("y", shape_by_conn=True, copy_shape="x")

        def compute(self,
                    inputs,
                    outputs,
                    discrete_inputs=None,
                    discrete_outputs=None):
            outputs["y"] = 10 * inputs["x"]

    class MyComp2(om.ExplicitComponent):
        def setup(self):
            self.add_input("y", shape_by_conn=True, copy_shape="z")
            self.add_output("z", shape_by_conn=True, copy_shape="y")

        def compute(self,
                    inputs,
                    outputs,
                    discrete_inputs=None,
                    discrete_outputs=None):
            outputs["z"] = 0.1 * inputs["y"]

    # --------------------------------------------------------------------------
    # With these 2 components, an OpenMDAO problem won't pass the setup due to
    # the non-determined shapes
    vanilla_problem = om.Problem()
    vanilla_problem.model.add_subsystem("comp1", MyComp1(), promotes=["*"])
    vanilla_problem.model.add_subsystem("comp2", MyComp2(), promotes=["*"])
    with pytest.raises(RuntimeError):
        vanilla_problem.setup()

    # --------------------------------------------------------------------------
    # ... But fastoad problem will do the setup and provide dummy shapes
    # when needed
    fastoad_problem = FASTOADProblem()
    fastoad_problem.model.add_subsystem("comp1", MyComp1(), promotes=["*"])
    fastoad_problem.model.add_subsystem("comp2", MyComp2(), promotes=["*"])
    fastoad_problem.setup()
    assert (fastoad_problem["x"].shape == fastoad_problem["y"].shape ==
            fastoad_problem["z"].shape == (2, ))

    # In such case, reading inputs after the setup will make run_model fail, because dummy shapes
    # have already been provided, and will probably not match the ones in input file.
    fastoad_problem.input_file_path = pth.join(DATA_FOLDER_PATH,
                                               "dynamic_shape_inputs_1.xml")
    fastoad_problem.read_inputs()
    with pytest.raises(ValueError):
        fastoad_problem.run_model()

    # --------------------------------------------------------------------------
    # If input reading is done before setup, all is fine.
    fastoad_problem = FASTOADProblem()
    fastoad_problem.model.add_subsystem("comp1", MyComp1(), promotes=["*"])
    fastoad_problem.model.add_subsystem("comp2", MyComp2(), promotes=["*"])
    fastoad_problem.input_file_path = pth.join(DATA_FOLDER_PATH,
                                               "dynamic_shape_inputs_1.xml")
    fastoad_problem.read_inputs()
    fastoad_problem.setup()

    inputs = VariableList.from_problem(fastoad_problem, io_status="inputs")
    assert inputs.names() == ["x"]
    outputs = VariableList.from_problem(fastoad_problem, io_status="outputs")
    assert outputs.names() == ["y", "z"]
    variables = VariableList.from_problem(fastoad_problem)
    assert variables.names() == ["x", "y", "z"]

    fastoad_problem.run_model()

    assert_allclose(fastoad_problem["x"], [1.0, 2.0, 5.0])
    assert_allclose(fastoad_problem["y"], [10.0, 20.0, 50.0])
    assert_allclose(fastoad_problem["z"], [1.0, 2.0, 5.0])

    # --------------------------------------------------------------------------
    # In the case variables are shaped from "downstream", OpenMDAO works OK.
    class MyComp3(om.ExplicitComponent):
        def setup(self):
            self.add_input("z", shape=(3, ))
            self.add_output("a")

        def compute(self,
                    inputs,
                    outputs,
                    discrete_inputs=None,
                    discrete_outputs=None):
            outputs["a"] = np.sum(inputs["z"])

    fastoad_problem = FASTOADProblem()
    fastoad_problem.model.add_subsystem("comp1", MyComp1(), promotes=["*"])
    fastoad_problem.model.add_subsystem("comp2", MyComp2(), promotes=["*"])
    fastoad_problem.model.add_subsystem("comp3", MyComp3(), promotes=["*"])

    inputs = VariableList.from_problem(fastoad_problem, io_status="inputs")
    assert inputs.names() == ["x"]
    outputs = VariableList.from_problem(fastoad_problem, io_status="outputs")
    assert outputs.names() == ["y", "z", "a"]
    variables = VariableList.from_problem(fastoad_problem)
    assert variables.names() == ["x", "y", "z", "a"]

    fastoad_problem.setup()
    fastoad_problem.run_model()