def test_derivatives_uneven_shape(): "gravmag.transform FFT derivatives work if grid spacing is uneven" model = [Prism(-1000, 1000, -500, 500, 0, 2000, {'density': 100})] shape = (150, 300) x, y, z = gridder.regular([-10000, 10000, -10000, 10000], shape, z=-100) grav = utils.mgal2si(prism.gz(x, y, z, model)) analytical = prism.gzz(x, y, z, model) calculated = utils.si2eotvos(transform.derivz(x, y, grav, shape, method='fft')) diff = _trim(np.abs(analytical - calculated), shape) assert np.all(diff <= 0.005*np.abs(analytical).max()), \ "Failed for gzz"
def test_tilt_analytical_derivatives(): "gravmag.transform tilt returns same values given analytical derivatives" model = [Prism(-100, 100, -100, 100, 0, 100, {'density': 1000})] shape = (400, 400) x, y, z = gridder.regular([-10000, 10000, -10000, 10000], shape, z=-100) data = utils.mgal2si(prism.gz(x, y, z, model)) dx = utils.eotvos2si(prism.gxz(x, y, z, model)) dy = utils.eotvos2si(prism.gyz(x, y, z, model)) dz = utils.eotvos2si(prism.gzz(x, y, z, model)) tilt_analytical = transform.tilt(x, y, data, shape, dx, dy, dz) tilt_numerical = transform.tilt(x, y, data, shape) npt.assert_allclose(tilt_numerical, tilt_analytical, rtol=0.10)
def test_derivatives_uneven_shape(): "gravmag.transform FFT derivatives work if grid spacing is uneven" model = [Prism(-1000, 1000, -500, 500, 0, 2000, {'density': 100})] shape = (150, 300) x, y, z = gridder.regular([-10000, 10000, -10000, 10000], shape, z=-100) grav = utils.mgal2si(prism.gz(x, y, z, model)) analytical = prism.gzz(x, y, z, model) calculated = utils.si2eotvos( transform.derivz(x, y, grav, shape, method='fft')) diff = _trim(np.abs(analytical - calculated), shape) assert np.all(diff <= 0.005*np.abs(analytical).max()), \ "Failed for gzz"
def test_around(): "gravmag.prism gravitational results are consistent around the prism" funcs = ['potential', 'gx', 'gy', 'gz', 'gxx', 'gxy', 'gxz', 'gyy', 'gyz', 'gzz'] model = [Prism(-300, 300, -300, 300, -300, 300, {'density': 1000})] # Make the computation points surround the prism shape = (101, 101) area = [-600, 600, -600, 600] distance = 310 grids = [gridder.regular(area, shape, z=-distance), gridder.regular(area, shape, z=distance), gridder.regular(area, shape, z=distance)[::-1], gridder.regular(area, shape, z=-distance)[::-1], np.array(gridder.regular(area, shape, z=distance))[[0, 2, 1]], np.array(gridder.regular(area, shape, z=-distance))[[0, 2, 1]]] xp, yp, zp = grids[0] # Test if each component is consistent # POTENTIAL face = [prism.potential(x, y, z, model) for x, y, z in grids] for i in range(6): for j in range(i + 1, 6): assert_almost(face[i], face[j], 10, 'Failed potential, faces %d and %d' % (i, j)) # GX top, bottom, north, south, east, west = [prism.gx(x, y, z, model) for x, y, z in grids] assert_almost(top, bottom, 10, 'Failed gx, top and bottom') assert_almost(north, -south, 10, 'Failed gx, north and south') assert_almost(east, west, 10, 'Failed gx, east and west') assert_almost(east, top, 10, 'Failed gx, east and top') assert_almost(north, -prism.gz(xp, yp, zp, model), 10, 'Failed gx, north and gz') assert_almost(south, prism.gz(xp, yp, zp, model), 10, 'Failed gx, south and gz') # GY top, bottom, north, south, east, west = [prism.gy(x, y, z, model) for x, y, z in grids] assert_almost(top, bottom, 10, 'Failed gy, top and bottom') assert_almost(north, south, 10, 'Failed gy, north and south') assert_almost(east, -west, 10, 'Failed gy, east and west') assert_almost(north, top, 10, 'Failed gy, north and top') assert_almost(east, -prism.gz(xp, yp, zp, model), 10, 'Failed gy, east and gz') assert_almost(west, prism.gz(xp, yp, zp, model), 10, 'Failed gy, west and gz') # GZ top, bottom, north, south, east, west = [prism.gz(x, y, z, model) for x, y, z in grids] assert_almost(top, -bottom, 10, 'Failed gz, top and bottom') assert_almost(north, south, 10, 'Failed gz, north and south') assert_almost(east, west, 10, 'Failed gz, east and west') assert_almost(north, prism.gx(xp, yp, zp, model), 10, 'Failed gz, north and gx') assert_almost(south, prism.gx(xp, yp, zp, model), 10, 'Failed gz, south and gx') assert_almost(east, prism.gy(xp, yp, zp, model), 10, 'Failed gz, east and gy') assert_almost(west, prism.gy(xp, yp, zp, model), 10, 'Failed gz, west and gy') # GXX top, bottom, north, south, east, west = [prism.gxx(x, y, z, model) for x, y, z in grids] assert_almost(top, bottom, 10, 'Failed gxx, top and bottom') assert_almost(north, south, 10, 'Failed gxx, north and south') assert_almost(east, west, 10, 'Failed gxx, east and west') assert_almost(east, top, 10, 'Failed gxx, east and top') assert_almost(north, prism.gzz(xp, yp, zp, model), 10, 'Failed gxx, north and gzz') assert_almost(south, prism.gzz(xp, yp, zp, model), 10, 'Failed gxx, south and gzz') # GXY top, bottom, north, south, east, west = [prism.gxy(x, y, z, model) for x, y, z in grids] assert_almost(top, bottom, 4, 'Failed gxy, top and bottom') assert_almost(north, -south, 10, 'Failed gxy, north and south') assert_almost(east, -west, 10, 'Failed gxy, east and west') assert_almost(north, -prism.gyz(xp, yp, zp, model), 10, 'Failed gxy, north and gyz') assert_almost(south, prism.gyz(xp, yp, zp, model), 10, 'Failed gxy, south and gyz') # GXZ top, bottom, north, south, east, west = [prism.gxz(x, y, z, model) for x, y, z in grids] assert_almost(top, -bottom, 10, 'Failed gxz, top and bottom') assert_almost(north, -south, 10, 'Failed gxz, north and south') assert_almost(east, west, 4, 'Failed gxz, east and west') assert_almost(bottom, north, 10, 'Failed gxz, bottom and north') assert_almost(top, south, 10, 'Failed gxz, top and south') assert_almost(east, prism.gxy(xp, yp, zp, model), 4, 'Failed gxz, east and gxy') assert_almost(west, prism.gxy(xp, yp, zp, model), 10, 'Failed gxz, west and gxy') # GYY top, bottom, north, south, east, west = [prism.gyy(x, y, z, model) for x, y, z in grids] assert_almost(top, bottom, 10, 'Failed gyy, top and bottom') assert_almost(north, south, 10, 'Failed gyy, north and south') assert_almost(east, west, 10, 'Failed gyy, east and west') assert_almost(top, north, 10, 'Failed gyy, top and north') assert_almost(east, prism.gzz(xp, yp, zp, model), 10, 'Failed gyy, east and gzz') assert_almost(west, prism.gzz(xp, yp, zp, model), 10, 'Failed gyy, west and gzz') # GYZ top, bottom, north, south, east, west = [prism.gyz(x, y, z, model) for x, y, z in grids] assert_almost(top, -bottom, 10, 'Failed gyz, top and bottom') assert_almost(north, south, 4, 'Failed gyz, north and south') assert_almost(east, -west, 10, 'Failed gyz, east and west') assert_almost(top, west, 10, 'Failed gyz, top and west') assert_almost(bottom, east, 10, 'Failed gyz, bottom and east') assert_almost(north, prism.gxy(xp, yp, zp, model), 4, 'Failed gyz, north and gxy') assert_almost(south, prism.gxy(xp, yp, zp, model), 10, 'Failed gyz, south and gxy') # GZZ top, bottom, north, south, east, west = [prism.gzz(x, y, z, model) for x, y, z in grids] assert_almost(top, bottom, 10, 'Failed gzz, top and bottom') assert_almost(north, south, 10, 'Failed gzz, north and south') assert_almost(east, west, 10, 'Failed gzz, east and west') assert_almost(north, prism.gxx(xp, yp, zp, model), 10, 'Failed gzz, north and gxx') assert_almost(south, prism.gxx(xp, yp, zp, model), 10, 'Failed gzz, south and gxx') assert_almost(east, prism.gyy(xp, yp, zp, model), 10, 'Failed gzz, east and gyy') assert_almost(west, prism.gyy(xp, yp, zp, model), 10, 'Failed gzz, west and gyy')
model = [mesher.Prism(-4000,-3000,-4000,-3000,0,2000,{'density':1000}), mesher.Prism(-1000,1000,-1000,1000,0,2000,{'density':-900}), mesher.Prism(2000,4000,3000,4000,0,2000,{'density':1300})] shape = (100,100) xp, yp, zp = gridder.regular((-5000, 5000, -5000, 5000), shape, z=-150) fields = [prism.potential(xp, yp, zp, model), prism.gx(xp, yp, zp, model), prism.gy(xp, yp, zp, model), prism.gz(xp, yp, zp, model), prism.gxx(xp, yp, zp, model), prism.gxy(xp, yp, zp, model), prism.gxz(xp, yp, zp, model), prism.gyy(xp, yp, zp, model), prism.gyz(xp, yp, zp, model), prism.gzz(xp, yp, zp, model)] titles = ['potential', 'gx', 'gy', 'gz', 'gxx', 'gxy', 'gxz', 'gyy', 'gyz', 'gzz'] mpl.figure(figsize=(8, 9)) mpl.subplots_adjust(left=0.03, right=0.95, bottom=0.05, top=0.92, hspace=0.3) mpl.suptitle("Potential fields produced by a 3 prism model") for i, field in enumerate(fields): mpl.subplot(4, 3, i + 3) mpl.axis('scaled') mpl.title(titles[i]) levels = mpl.contourf(yp*0.001, xp*0.001, field, shape, 15) cb = mpl.colorbar() mpl.contour(yp*0.001, xp*0.001, field, shape, levels, clabel=False, linewidth=0.1) mpl.show() myv.figure()
props = {'density':1000} model = [Prism(400, 600, 300, 500, 200, 400, props), Prism(400, 600, 400, 600, 400, 600, props), Prism(400, 600, 500, 700, 600, 800, props)] # and generate synthetic data from it shape = (51, 51) bounds = [0, 1000, 0, 1000, 0, 1000] area = bounds[0:4] xp, yp, zp = gridder.regular(area, shape, z=-150) noise = 0.5 gxx = utils.contaminate(prism.gxx(xp, yp, zp, model), noise) gxy = utils.contaminate(prism.gxy(xp, yp, zp, model), noise) gxz = utils.contaminate(prism.gxz(xp, yp, zp, model), noise) gyy = utils.contaminate(prism.gyy(xp, yp, zp, model), noise) gyz = utils.contaminate(prism.gyz(xp, yp, zp, model), noise) gzz = utils.contaminate(prism.gzz(xp, yp, zp, model), noise) tensor = [gxx, gxy, gxz, gyy, gyz, gzz] titles = ['gxx', 'gxy', 'gxz', 'gyy', 'gyz', 'gzz'] # plot the data mpl.figure() for i in xrange(len(tensor)): mpl.subplot(2, 3, i + 1) mpl.title(titles[i]) mpl.axis('scaled') levels = mpl.contourf(yp, xp, tensor[i], shape, 30) mpl.colorbar() mpl.xlabel('y (km)') mpl.ylabel('x (km)') mpl.m2km() mpl.show()
def test_gzz(): "gravmag.prism.gzz python vs cython implementation" py = _prism_numpy.gzz(xp, yp, zp, model) cy = prism.gzz(xp, yp, zp, model) diff = np.abs(py - cy) assert np.all(diff <= precision), 'max diff: %g' % (max(diff))
def test_gzz(): "polyprism.gzz against prism" resprism = prism.gzz(xp, yp, zp, prismmodel) respoly = polyprism.gzz(xp, yp, zp, model) diff = np.abs(resprism - respoly) assert np.all(diff <= precision), 'max diff: %g' % (max(diff))
""" import numpy as np from fatiando.gravmag import prism, sphere from fatiando.gravmag.eqlayer import EQLGravity from fatiando.inversion.regularization import Smoothness2D, LCurve from fatiando import gridder, utils, mesher from fatiando.vis import mpl # Make synthetic data props = {'density': 1000} model = [mesher.Prism(-500, 500, -1000, 1000, 500, 4000, props)] area = [-5000, 5000, -5000, 5000] x1, y1, z1 = gridder.scatter(area, 80, z=0, seed=0) gz = utils.contaminate(prism.gz(x1, y1, z1, model), 0.1, seed=0) x2, y2, z2 = gridder.regular(area, (10, 50), z=-200) gzz = utils.contaminate(prism.gzz(x2, y2, z2, model), 5, seed=0) # Setup the layer layer = mesher.PointGrid([-6000, 6000, -6000, 6000], 500, (50, 50)) # and the inversion # Apply a scaling factor to make both portions of the misfit the same order of # magnitude scale = np.linalg.norm(gz)**2 / np.linalg.norm(gzz)**2 misfit = (EQLGravity(x1, y1, z1, gz, layer) + scale * EQLGravity(x2, y2, z2, gzz, layer, field='gzz')) regul = Smoothness2D(layer.shape) # Use an L-curve analysis to find the best regularization parameter solver = LCurve(misfit, regul, [10**i for i in range(-30, -20)]).fit() layer.addprop('density', solver.estimate_) # Now I can forward model gz using my layer to produce an integrated map in a # much denser region
# show it myv.figure() myv.prisms(model, 'density') myv.axes(myv.outline(bounds), ranges=[i * 0.001 for i in bounds], fmt='%.1f', nlabels=6) myv.wall_bottom(bounds) myv.wall_north(bounds) myv.show() # and use it to generate some tensor data shape = (51, 51) area = bounds[0:4] noise = 2 x, y, z = gridder.regular(area, shape, z=-150) gyy = utils.contaminate(prism.gyy(x, y, z, model), noise) gyz = utils.contaminate(prism.gyz(x, y, z, model), noise) gzz = utils.contaminate(prism.gzz(x, y, z, model), noise) # Set up the inversion: # Create a prism mesh mesh = PrismMesh(bounds, (15, 50, 50)) # Wrap the data so that harvester can use it data = [harvester.Gyy(x, y, z, gyy), harvester.Gyz(x, y, z, gyz), harvester.Gzz(x, y, z, gzz)] # and the seeds seeds = harvester.sow( [(800, 3250, 600, {'density': 1200}), (1200, 3250, 600, {'density': 1200}), (1700, 3250, 600, {'density': 1200}), (2100, 3250, 600, {'density': 1200}), (2500, 3250, 600, {'density': 1200}),
""" import numpy as np from fatiando.gravmag import prism, sphere from fatiando.gravmag.eqlayer import EQLGravity from fatiando.inversion.regularization import Smoothness2D, LCurve from fatiando import gridder, utils, mesher from fatiando.vis import mpl # Make synthetic data props = {'density': 1000} model = [mesher.Prism(-500, 500, -1000, 1000, 500, 4000, props)] area = [-5000, 5000, -5000, 5000] x1, y1, z1 = gridder.scatter(area, 80, z=0, seed=0) gz = utils.contaminate(prism.gz(x1, y1, z1, model), 0.1, seed=0) x2, y2, z2 = gridder.regular(area, (10, 50), z=-200) gzz = utils.contaminate(prism.gzz(x2, y2, z2, model), 5, seed=0) # Setup the layer layer = mesher.PointGrid([-6000, 6000, -6000, 6000], 500, (50, 50)) # and the inversion # Apply a scaling factor to make both portions of the misfit the same order of # magnitude scale = np.linalg.norm(gz) ** 2 / np.linalg.norm(gzz) ** 2 misfit = (EQLGravity(x1, y1, z1, gz, layer) + scale * EQLGravity(x2, y2, z2, gzz, layer, field='gzz')) regul = Smoothness2D(layer.shape) # Use an L-curve analysis to find the best regularization parameter solver = LCurve(misfit, regul, [10 ** i for i in range(-30, -20)]).fit() layer.addprop('density', solver.estimate_) # Now I can forward model gz using my layer to produce an integrated map in a # much denser region
model = [mesher.Prism(-1000, 1000, -1000, 1000, 0, 2000, {'density': 100})] area = (-5000, 5000, -5000, 5000) shape = (51, 51) z0 = -500 xp, yp, zp = gridder.regular(area, shape, z=z0) gz = utils.contaminate(prism.gz(xp, yp, zp, model), 0.001) # Need to convert gz to SI units so that the result can be converted to Eotvos gxz = utils.si2eotvos(transform.derivx(xp, yp, utils.mgal2si(gz), shape)) gyz = utils.si2eotvos(transform.derivy(xp, yp, utils.mgal2si(gz), shape)) gzz = utils.si2eotvos(transform.derivz(xp, yp, utils.mgal2si(gz), shape)) gxz_true = prism.gxz(xp, yp, zp, model) gyz_true = prism.gyz(xp, yp, zp, model) gzz_true = prism.gzz(xp, yp, zp, model) mpl.figure() mpl.title("Original gravity anomaly") mpl.axis('scaled') mpl.contourf(xp, yp, gz, shape, 15) mpl.colorbar(shrink=0.7) mpl.m2km() mpl.figure(figsize=(14, 10)) mpl.subplots_adjust(top=0.95, left=0.05, right=0.95) mpl.subplot(2, 3, 1) mpl.title("x deriv (contour) + true (color map)") mpl.axis('scaled') levels = mpl.contourf(yp, xp, gxz_true, shape, 12) mpl.colorbar(shrink=0.7)
from fatiando.vis import mpl, myv from fatiando import mesher, gridder, utils from fatiando.gravmag import prism, tensor # Generate some synthetic data model = [mesher.Prism(-1000, 1000, -1000, 1000, 1000, 3000, {'density': 1000})] shape = (100, 100) xp, yp, zp = gridder.regular((-5000, 5000, -5000, 5000), shape, z=-150) noise = 2 data = [ utils.contaminate(prism.gxx(xp, yp, zp, model), noise), utils.contaminate(prism.gxy(xp, yp, zp, model), noise), utils.contaminate(prism.gxz(xp, yp, zp, model), noise), utils.contaminate(prism.gyy(xp, yp, zp, model), noise), utils.contaminate(prism.gyz(xp, yp, zp, model), noise), utils.contaminate(prism.gzz(xp, yp, zp, model), noise) ] # Plot the data titles = ['gxx', 'gxy', 'gxz', 'gyy', 'gyz', 'gzz'] mpl.figure() for i, title in enumerate(titles): mpl.subplot(3, 2, i + 1) mpl.title(title) mpl.axis('scaled') levels = mpl.contourf(yp, xp, data[i], shape, 10) mpl.contour(yp, xp, data[i], shape, levels) mpl.m2km() mpl.show() # Get the eigenvectors from the tensor data eigenvals, eigenvecs = tensor.eigen(data) # Use the first eigenvector to estimate the center of mass
# show it myv.figure() myv.prisms(model, 'density') myv.axes(myv.outline(bounds), ranges=[i*0.001 for i in bounds], fmt='%.1f', nlabels=6) myv.wall_bottom(bounds) myv.wall_north(bounds) myv.show() # and use it to generate some tensor data shape = (51, 51) area = bounds[0:4] noise = 2 x, y, z = gridder.regular(area, shape, z=-150) gyy = utils.contaminate(prism.gyy(x, y, z, model), noise) gyz = utils.contaminate(prism.gyz(x, y, z, model), noise) gzz = utils.contaminate(prism.gzz(x, y, z, model), noise) # Set up the inversion: # Create a prism mesh mesh = PrismMesh(bounds, (15, 50, 50)) # Wrap the data so that harvester can use it data = [harvester.Gyy(x, y, z, gyy), harvester.Gyz(x, y, z, gyz), harvester.Gzz(x, y, z, gzz)] # and the seeds seeds = harvester.sow( [( 800, 3250, 600, {'density':1200}), (1200, 3250, 600, {'density':1200}), (1700, 3250, 600, {'density':1200}), (2100, 3250, 600, {'density':1200}), (2500, 3250, 600, {'density':1200}),
mesher.Prism(-1000, 1000, -1000, 1000, 0, 2000, {'density': -900}), mesher.Prism(2000, 4000, 3000, 4000, 0, 2000, {'density': 1300}) ] shape = (100, 100) xp, yp, zp = gridder.regular((-5000, 5000, -5000, 5000), shape, z=-150) fields = [ prism.potential(xp, yp, zp, model), prism.gx(xp, yp, zp, model), prism.gy(xp, yp, zp, model), prism.gz(xp, yp, zp, model), prism.gxx(xp, yp, zp, model), prism.gxy(xp, yp, zp, model), prism.gxz(xp, yp, zp, model), prism.gyy(xp, yp, zp, model), prism.gyz(xp, yp, zp, model), prism.gzz(xp, yp, zp, model) ] titles = [ 'potential', 'gx', 'gy', 'gz', 'gxx', 'gxy', 'gxz', 'gyy', 'gyz', 'gzz' ] mpl.figure(figsize=(8, 9)) mpl.subplots_adjust(left=0.03, right=0.95, bottom=0.05, top=0.92, hspace=0.3) mpl.suptitle("Potential fields produced by a 3 prism model") for i, field in enumerate(fields): mpl.subplot(4, 3, i + 3) mpl.axis('scaled') mpl.title(titles[i]) levels = mpl.contourf(yp * 0.001, xp * 0.001, field, shape, 15) cb = mpl.colorbar() mpl.contour(yp * 0.001, xp * 0.001,