maxit = int(duration/dt)
stations = [[75*ds, 125*ds]] # x, z coordinate of the seismometer
snapshots = 3 # every 3 iterations plots one
simulation = wavefd.scalar(velocity, area, dt, maxit, sources, stations, snapshots)

# This part makes an animation using matplotlibs animation API
background = (velocity-4000)*10**-1
fig = mpl.figure(figsize=(8, 6))
mpl.subplots_adjust(right=0.98, left=0.11, hspace=0.5, top=0.93)
mpl.subplot2grid((4, 3), (0,0), colspan=3,rowspan=3)
wavefield = mpl.imshow(np.zeros_like(velocity), extent=area, cmap=mpl.cm.gray_r,
                       vmin=-1000, vmax=1000)
mpl.points(stations, '^b', size=8)
mpl.ylim(area[2:][::-1])
mpl.xlabel('x (km)')
mpl.ylabel('z (km)')
mpl.m2km()
mpl.subplot2grid((4,3), (3,0), colspan=3)
seismogram1, = mpl.plot([],[],'-k')
mpl.xlim(0, duration)
mpl.ylim(-200, 200)
mpl.ylabel('Amplitude')
times = np.linspace(0, dt*maxit, maxit)
# This function updates the plot every few timesteps
def animate(i):
    t, u, seismogram = simulation.next()
    seismogram1.set_data(times[:t+1], seismogram[0][:t+1])
    wavefield.set_array(background[::-1]+u[::-1])
    return wavefield, seismogram1
anim = animation.FuncAnimation(fig, animate, frames=maxit/snapshots, interval=1)
mpl.show()
    print e

# Plot the fit and the normalized histogram of the residuals
mpl.figure(figsize=(14, 5))
mpl.subplot(1, 2, 1)
mpl.title("Total Field Anomaly (nT)", fontsize=14)
mpl.axis('scaled')
nlevels = mpl.contour(y, x, tf, (50, 50), 15, interp=True, color='r',
                      label='Observed', linewidth=2.0)
mpl.contour(y, x, solver.predicted(), (50, 50), nlevels, interp=True,
            color='b', label='Predicted', style='dashed', linewidth=2.0)
mpl.legend(loc='upper left', shadow=True, prop={'size': 13})
mpl.xlabel('East y (m)', fontsize=14)
mpl.ylabel('North x (m)', fontsize=14)
mpl.subplot(1, 2, 2)
residuals_mean = numpy.mean(solver.residuals())
residuals_std = numpy.std(solver.residuals())
# Each residual is subtracted from the mean and the resulting
# difference is divided by the standard deviation
s = (solver.residuals() - residuals_mean) / residuals_std
mpl.hist(s, bins=21, range=None, normed=True, weights=None,
         cumulative=False, bottom=None, histtype='bar', align='mid',
         orientation='vertical', rwidth=None, log=False,
         color=None, label=None)
mpl.xlim(-4, 4)
mpl.title("mean = %.3f    std = %.3f" % (residuals_mean, residuals_std),
          fontsize=14)
mpl.ylabel("P(z)", fontsize=14)
mpl.xlabel("z", fontsize=14)
mpl.show()
from fatiando import utils, mesher
from fatiando.gravmag import talwani
from fatiando.vis import mpl

# Notice that the last two number are switched.
# This way, the z axis in the plots points down.
area = (-5000, 5000, 5000, 0)
axes = mpl.figure().gca()
mpl.xlabel("X")
mpl.ylabel("Z")
mpl.axis('scaled')
polygons = [mesher.Polygon(mpl.draw_polygon(area, axes),
                              {'density':500})]
xp = numpy.arange(-4500, 4500, 100)
zp = numpy.zeros_like(xp)
gz = talwani.gz(xp, zp, polygons)

mpl.figure()
mpl.axis('scaled')
mpl.subplot(2,1,1)
mpl.title(r"Gravity anomaly produced by the model")
mpl.plot(xp, gz, '-k', linewidth=2)
mpl.ylabel("mGal")
mpl.xlim(-5000, 5000)
mpl.subplot(2,1,2)
mpl.polygon(polygons[0], 'o-k', linewidth=2, fill='k', alpha=0.5)
mpl.xlabel("X")
mpl.ylabel("Z")
mpl.set_area(area)
mpl.show()
log.info("Generating synthetic data")
verts = [(10000, 1.), (90000, 1.), (90000, 7000), (10000, 3330)]
model = mesher.Polygon(verts, {'density':-100})
xp = numpy.arange(0., 100000., 1000.)
zp = numpy.zeros_like(xp)
gz = utils.contaminate(gravmag.talwani.gz(xp, zp, [model]), 0.5)

log.info("Preparing for the inversion")
solver = inversion.gradient.levmarq(initial=(9000, 500))
estimate, residuals = gravmag.basin2d.trapezoidal(xp, zp, gz, verts[0:2], -100,
    solver)

mpl.figure()
mpl.subplot(2, 1, 1)
mpl.title("Gravity anomaly")
mpl.plot(xp, gz, 'ok', label='Observed')
mpl.plot(xp, gz - residuals, '-r', linewidth=2, label='Predicted')
mpl.legend(loc='lower left', numpoints=1)
mpl.ylabel("mGal")
mpl.xlim(0, 100000)
mpl.subplot(2, 1, 2)
mpl.polygon(estimate, 'o-r', linewidth=2, fill='r', alpha=0.3,
                label='Estimated')
mpl.polygon(model, '--k', linewidth=2, label='True')
mpl.legend(loc='lower left', numpoints=1)
mpl.xlabel("X")
mpl.ylabel("Z")
mpl.set_area((0, 100000, 10000, -500))
mpl.show()
duration = 20
maxit = int(duration / dt)
stations = [[50000, 0]]  # x, z coordinate of the seismometer
snapshot = int(0.5 / dt)  # Plot a snapshot of the simulation every 0.5 seconds
simulation = wavefd.elastic_sh(mu, density, area, dt, maxit, sources, stations,
                               snapshot, padding=50, taper=0.01)

# This part makes an animation using matplotlibs animation API
fig = mpl.figure(figsize=(14, 5))
ax = mpl.subplot(1, 2, 2)
mpl.title('Wavefield')
# Start with everything zero and grab the plot so that it can be updated later
wavefield_plt = mpl.imshow(np.zeros(shape), extent=area, vmin=-10 ** (-5),
                           vmax=10 ** (-5), cmap=mpl.cm.gray_r)
mpl.points(stations, '^b')
mpl.xlim(area[:2])
mpl.ylim(area[2:][::-1])
mpl.xlabel('x (km)')
mpl.ylabel('z (km)')
mpl.subplot(1, 2, 1)
seismogram_plt, = mpl.plot([], [], '-k')
mpl.xlim(0, duration)
mpl.ylim(-10 ** (-4), 10 ** (-4))
mpl.xlabel('time (s)')
mpl.ylabel('Amplitude')
times = np.linspace(0, duration, maxit)
# Update the plot everytime the simulation yields


def animate(i):
    """
Beispiel #6
0
# Generate random points
x, y = gridder.scatter((-2, 2, -2, 2), n=300, seed=1)
# And calculate 2D Gaussians on these points as sample data
def data(x, y):
    return (utils.gaussian2d(x, y, -0.6, -1)
            - utils.gaussian2d(x, y, 1.5, 1.5))


d = data(x, y)

# Extract a profile along the diagonal
p1, p2 = [-1.5, 0], [1.5, 1.5]
xp, yp, distance, dp = gridder.profile(x, y, d, p1, p2, 100)
dp_true = data(xp, yp)

mpl.figure()
mpl.subplot(2, 1, 2)
mpl.title("Irregular grid")
mpl.plot(xp, yp, '-k', label='Profile', linewidth=2)
mpl.contourf(x, y, d, (100, 100), 50, interp=True)
mpl.colorbar(orientation='horizontal')
mpl.legend(loc='lower right')
mpl.subplot(2, 1, 1)
mpl.title('Profile')
mpl.plot(distance, dp, '.b', label='Extracted')
mpl.plot(distance, dp_true, '-k', label='True')
mpl.xlim(distance.min(), distance.max())
mpl.legend(loc='lower right')
mpl.show()
Beispiel #7
0
x, y = gridder.scatter((-2, 2, -2, 2), n=300, seed=1)


# And calculate 2D Gaussians on these points as sample data
def data(x, y):
    return (utils.gaussian2d(x, y, -0.6, -1) -
            utils.gaussian2d(x, y, 1.5, 1.5))


d = data(x, y)

# Extract a profile along the diagonal
p1, p2 = [-1.5, 0], [1.5, 1.5]
xp, yp, distance, dp = gridder.profile(x, y, d, p1, p2, 100)
dp_true = data(xp, yp)

mpl.figure()
mpl.subplot(2, 1, 2)
mpl.title("Irregular grid")
mpl.plot(xp, yp, '-k', label='Profile', linewidth=2)
mpl.contourf(x, y, d, (100, 100), 50, interp=True)
mpl.colorbar(orientation='horizontal')
mpl.legend(loc='lower right')
mpl.subplot(2, 1, 1)
mpl.title('Profile')
mpl.plot(distance, dp, '.b', label='Extracted')
mpl.plot(distance, dp_true, '-k', label='True')
mpl.xlim(distance.min(), distance.max())
mpl.legend(loc='lower right')
mpl.show()
    0.02, percent=True, return_stddev=True)
# Make the solver and run the inversion using damping regularization
# (assumes known thicknesses of the layers)
solver = (LayeredStraight(tts, zp, thickness) +
          0.1 * Damping(len(thickness))).fit()
velocity_ = solver.estimate_

# Plot the results
mpl.figure(figsize=(12, 5))
mpl.subplot(1, 2, 1)
mpl.grid()
mpl.title("Vertical seismic profile")
mpl.plot(tts, zp, 'ok', label='Observed')
mpl.plot(solver[0].predicted(), zp, '-r', linewidth=3, label='Predicted')
mpl.legend(loc='upper right', numpoints=1)
mpl.xlabel("Travel-time (s)")
mpl.ylabel("Z (m)")
mpl.ylim(sum(thickness), 0)
mpl.subplot(1, 2, 2)
mpl.grid()
mpl.title("Velocity profile")
mpl.layers(thickness, velocity_, 'o-k', linewidth=2, label='Estimated')
mpl.layers(thickness, velocity, '--b', linewidth=2, label='True')
mpl.ylim(zmax, zmin)
mpl.xlim(vmin, vmax)
leg = mpl.legend(loc='upper right', numpoints=1)
leg.get_frame().set_alpha(0.5)
mpl.xlabel("Velocity (m/s)")
mpl.ylabel("Z (m)")
mpl.show()
model = mesher.Polygon(verts, {'density': -100})
xp = numpy.arange(0., 100000., 1000.)
zp = numpy.zeros_like(xp)
gz = utils.contaminate(gravmag.talwani.gz(xp, zp, [model]), 0.5)

solver = inversion.gradient.levmarq(initial=(9000, 500))
estimate, residuals = gravmag.basin2d.trapezoidal(xp, zp, gz, verts[0:2], -100,
                                                  solver)

mpl.figure()
mpl.subplot(2, 1, 1)
mpl.title("Gravity anomaly")
mpl.plot(xp, gz, 'ok', label='Observed')
mpl.plot(xp, gz - residuals, '-r', linewidth=2, label='Predicted')
mpl.legend(loc='lower left', numpoints=1)
mpl.ylabel("mGal")
mpl.xlim(0, 100000)
mpl.subplot(2, 1, 2)
mpl.polygon(estimate,
            'o-r',
            linewidth=2,
            fill='r',
            alpha=0.3,
            label='Estimated')
mpl.polygon(model, '--k', linewidth=2, label='True')
mpl.legend(loc='lower left', numpoints=1)
mpl.xlabel("X")
mpl.ylabel("Z")
mpl.set_area((0, 100000, 10000, -500))
mpl.show()
Beispiel #10
0
"""
import numpy
from fatiando import utils, mesher, gravmag, inversion
from fatiando.vis import mpl

# Notice that the last two number are switched.
# This way, the z axis in the plots points down.
area = (-5000, 5000, 5000, 0)
axes = mpl.figure().gca()
mpl.xlabel("X")
mpl.ylabel("Z")
mpl.axis('scaled')
polygons = [mesher.Polygon(mpl.draw_polygon(area, axes), {'density': 500})]
xp = numpy.arange(-4500, 4500, 100)
zp = numpy.zeros_like(xp)
gz = gravmag.talwani.gz(xp, zp, polygons)

mpl.figure()
mpl.axis('scaled')
mpl.subplot(2, 1, 1)
mpl.title(r"Gravity anomaly produced by the model")
mpl.plot(xp, gz, '-k', linewidth=2)
mpl.ylabel("mGal")
mpl.xlim(-5000, 5000)
mpl.subplot(2, 1, 2)
mpl.polygon(polygons[0], 'o-k', linewidth=2, fill='k', alpha=0.5)
mpl.xlabel("X")
mpl.ylabel("Z")
mpl.set_area(area)
mpl.show()
Beispiel #11
0
dt = wavefd.maxdt(area, shape, svel.max())
duration = 250
maxit = int(duration / dt)
stations = [[100000, 0], [700000, 0]]
snapshots = int(1. / dt)
simulation = wavefd.elastic_sh(mu, density, area, dt, maxit, sources, stations,
                               snapshots, padding=70, taper=0.005)

# This part makes an animation using matplotlibs animation API
background = svel * 5 * 10 ** -7
fig = mpl.figure(figsize=(10, 8))
mpl.subplots_adjust(right=0.98, left=0.11, hspace=0.3, top=0.93)
mpl.subplot(3, 1, 1)
mpl.title('Seismogram 1')
seismogram1, = mpl.plot([], [], '-k')
mpl.xlim(0, duration)
mpl.ylim(-0.1, 0.1)
mpl.ylabel('Amplitude')
mpl.subplot(3, 1, 2)
mpl.title('Seismogram 2')
seismogram2, = mpl.plot([], [], '-k')
mpl.xlim(0, duration)
mpl.ylim(-0.1, 0.1)
mpl.ylabel('Amplitude')
ax = mpl.subplot(3, 1, 3)
mpl.title('time: 0.0 s')
wavefield = mpl.imshow(background, extent=area, cmap=mpl.cm.gray_r,
                       vmin=-0.005, vmax=0.005)
mpl.points(stations, '^b', size=8)
mpl.text(750000, 20000, 'Crust')
mpl.text(740000, 100000, 'Mantle')
                                maxit,
                                sources,
                                stations,
                                snapshots,
                                padding=70,
                                taper=0.005,
                                xz2ps=True)

# This part makes an animation using matplotlibs animation API
background = 10**-5 * ((density - density.min()) / density.max())
fig = mpl.figure(figsize=(10, 8))
mpl.subplots_adjust(right=0.98, left=0.11, hspace=0.3, top=0.93)
mpl.subplot(3, 1, 1)
mpl.title('x seismogram')
xseismogram, = mpl.plot([], [], '-k')
mpl.xlim(0, duration)
mpl.ylim(-0.05, 0.05)
mpl.ylabel('Amplitude')
mpl.subplot(3, 1, 2)
mpl.title('z seismogram')
zseismogram, = mpl.plot([], [], '-k')
mpl.xlim(0, duration)
mpl.ylim(-0.05, 0.05)
mpl.ylabel('Amplitude')
ax = mpl.subplot(3, 1, 3)
mpl.title('time: 0.0 s')
wavefield = mpl.imshow(background,
                       extent=area,
                       cmap=mpl.cm.gray_r,
                       vmin=-0.00001,
                       vmax=0.00001)
            linewidth=2.0)
mpl.legend(loc='upper left', shadow=True, prop={'size': 13})
mpl.xlabel('East y (m)', fontsize=14)
mpl.ylabel('North x (m)', fontsize=14)
mpl.subplot(1, 2, 2)
residuals_mean = numpy.mean(solver.residuals())
residuals_std = numpy.std(solver.residuals())
# Each residual is subtracted from the mean and the resulting
# difference is divided by the standard deviation
s = (solver.residuals() - residuals_mean) / residuals_std
mpl.hist(s,
         bins=21,
         range=None,
         normed=True,
         weights=None,
         cumulative=False,
         bottom=None,
         histtype='bar',
         align='mid',
         orientation='vertical',
         rwidth=None,
         log=False,
         color=None,
         label=None)
mpl.xlim(-4, 4)
mpl.title("mean = %.3f    std = %.3f" % (residuals_mean, residuals_std),
          fontsize=14)
mpl.ylabel("P(z)", fontsize=14)
mpl.xlabel("z", fontsize=14)
mpl.show()