Beispiel #1
0
def test_FBM_fgn_adjust_rnd(n_good, hurst_good, length_good,
                              fbm_method_good, adjust_rnd_good):
    f = FBM(n_good, hurst_good, length_good, fbm_method_good)
    fgn_sample = f.fgn()
    fgn_sample = f.fgn(adjust_rnd_good)
    assert isinstance(fgn_sample, np.ndarray)
    assert len(fgn_sample) == n_good
Beispiel #2
0
class FBM2D:
    def __init__(self, H, N, L):
        """
        init of FBM2D
        
        parameters:
        H : Hurst index with 0 < H < 1
        N : number of observations along both dimensions, constructed field will contain (N x N) points
        L : number of one dimensional fbm used in construction of 2D Fields
        """
        if H <= 0 or H >= 1:
            raise ValueError("Hurst parameter must be in interval (0, 1).")
        self.H = H
        self.N = N
        self.L = L
        self.fbb_gen = FBM(
            n=int(1.5 * self.N), hurst=self.H,
            length=1.5)  #init generator for fractional Brownian motion

    def fbs(self):
        """
        returnes fractional Brownian surface (scalar fractional Brownian motion) in 2D
        """
        #generate self.L bands with equidistant angles theta between band and x-axis
        theta_i = np.linspace(0, np.pi, self.L + 1)[:-1]  #angles
        oneDfbm = np.zeros((self.L, int(1.5 * self.N) + 1))
        for i in range(self.L):
            fGn = self.fbb_gen.fgn()
            oneDfbm[i, 1:] = np.sqrt(
                np.sqrt(np.pi) * math.gamma(1 + self.H) /
                math.gamma(1 / 2 + self.H)) * np.cumsum(fGn)

        # perform turbing band algortihm in fortran
        return f.turningband2d(oneDfbm, theta_i, self.N)
Beispiel #3
0
class FractionalBlackScholes(BlackScholes):
    def __init__(self,
                 drift,
                 volatility,
                 hurst,
                 nb_paths,
                 nb_stocks,
                 nb_dates,
                 spot,
                 maturity,
                 dividend=0,
                 **keywords):
        super(FractionalBlackScholes,
              self).__init__(drift, volatility, nb_paths, nb_stocks, nb_dates,
                             spot, maturity, dividend, **keywords)
        self.drift = drift
        self.hurst = hurst
        self.fBM = FBM(n=nb_dates,
                       hurst=self.hurst,
                       length=maturity,
                       method='hosking')

    def generate_one_path(self):
        """Returns a nparray (nb_stocks * nb_dates) with prices."""
        path = np.empty((self.nb_stocks, self.nb_dates + 1))
        fracBM_noise = np.empty((self.nb_stocks, self.nb_dates))
        path[:, 0] = self.spot
        for stock in range(self.nb_stocks):
            fracBM_noise[stock, :] = self.fBM.fgn()
        for k in range(1, self.nb_dates + 1):
            previous_spots = path[:, k - 1]
            diffusion = self.diffusion_fct(previous_spots, (k) * self.dt)
            path[:, k] = (previous_spots +
                          self.drift_fct(previous_spots,
                                         (k) * self.dt) * self.dt +
                          np.multiply(diffusion, fracBM_noise[:, k - 1]))
        print("path", path)
        return path
from fbm import FBM
import matplotlib.pyplot as plt

f = FBM(n=100, hurst=0.9, length=1, method='daviesharte')

# Generate a fBm realization
fbm_sample = f.fbm()

# Generate a fGn realization
fgn_sample = f.fgn()

# Get the times associated with the fBm
t_values = f.times()
plt.plot(t_values, fbm_sample)
plt.show()
Beispiel #5
0
# flake8: noqa
from fbm import FBM
import matplotlib.pyplot as plt
import time
import math
import numpy as np


def h(s):
    # return 0.499*math.sin(t) + 0.5
    # return 0.6 * t + 0.3
    return 0.5 * np.exp(-8.0 * s**2)


fbm_generator = FBM(2**8, 0.85)
t = fbm_generator.times()
fbm_realization = fbm_generator.fbm()
fgn_realization = fbm_generator.fgn()
h_t = np.array(h(fbm_realization))
plt.plot(t, fbm_realization)
plt.plot(t, h_t)
# plt.plot(t[0:-1], fgn_realization)
plt.show()