def side_force_coeff_test_cases():
    constants = SkywalkerX8Constants()
    b = constants.wing_span
    state1 = State()
    state1.vx = 20.0
    state1.vy = 0.0
    state1.vz = 0.0
    state2 = State()
    state2.vx = 28.6362532829
    state2.vy = 1.0
    state2.vz = 0.0
    state2.ang_rate_x = 5 * np.pi / 180
    state2.ang_rate_z = 5 * np.pi / 180
    wind = np.zeros(6)
    airspeed = np.sqrt(np.sum(calc_airspeed(state2, wind)**2))
    zero_input = ControlInput()
    aileron_input = ControlInput()
    aileron_input.aileron_deflection = 2.0 * np.pi / 180.0

    return [
        (state1, wind, 0.0, zero_input, 2.99968641720902E-08),
        (state1, wind, 1.0, zero_input, -7.94977329537982E-06),
        (state2, wind, 0.0, aileron_input,
         -0.008604744865183 + -0.085 * b / (2 * airspeed) * state2.ang_rate_x +
         0.005 * b / (2 * airspeed) * state2.ang_rate_z +
         0.0433 * aileron_input.aileron_deflection),
        (state2, wind, 1.0, aileron_input,
         -0.007089388672593 + -0.133 * b / (2 * airspeed) * state2.ang_rate_x +
         0.002 * b / (2 * airspeed) * state2.ang_rate_z +
         0.0433 * aileron_input.aileron_deflection)
    ]
def yaw_moment_coeff_test_cases():
    constants = SkywalkerX8Constants()
    b = constants.wing_span
    state1 = State()
    state1.vx = 20.0
    state1.vy = 0.0
    state1.vz = 0.0
    state2 = State()
    state2.vx = 28.6362532829
    state2.vy = 1.0
    state2.vz = 0.0
    state2.ang_rate_x = 5 * np.pi / 180
    state2.ang_rate_z = 5 * np.pi / 180
    wind = np.zeros(6)
    airspeed = np.sqrt(np.sum(calc_airspeed(state2, wind)**2))
    zero_input = ControlInput()
    aileron_input = ControlInput()
    aileron_input.aileron_deflection = 2.0 * np.pi / 180.0

    return [
        (state1, wind, 0.0, zero_input, 4.9176697574439E-06),
        (state1, wind, 1.0, zero_input, 1.96093394589053E-05),
        (state2, wind, 0.0, aileron_input,
         0.000825947539055 + 0.027 * b / (2 * airspeed) * state2.ang_rate_x +
         -0.022 * b / (2 * airspeed) * state2.ang_rate_z -
         0.00339 * aileron_input.aileron_deflection),
        (state2, wind, 1.0, aileron_input,
         0.001052911121301 + 0.017 * b / (2 * airspeed) * state2.ang_rate_x +
         -0.049 * b / (2 * airspeed) * state2.ang_rate_z -
         0.00339 * aileron_input.aileron_deflection)
    ]
def roll_moment_coeff_test_cases():
    constants = SkywalkerX8Constants()
    b = constants.wing_span
    state1 = State()
    state1.vx = 20.0
    state1.vy = 0.0
    state1.vz = 0.0
    state2 = State()
    state2.vx = 28.6362532829
    state2.vy = 1.0
    state2.vz = 0.0
    state2.ang_rate_x = 5 * np.pi / 180
    state2.ang_rate_z = 5 * np.pi / 180
    wind = np.zeros(6)
    airspeed = np.sqrt(np.sum(calc_airspeed(state2, wind)**2))
    zero_input = ControlInput()
    aileron_input = ControlInput()
    aileron_input.aileron_deflection = 2.0 * np.pi / 180.0

    return [
        (state1, wind, 0.0, zero_input, -8.40821757613653E-05),
        (state1, wind, 1.0, zero_input, -7.34515369827804E-05),
        (state2, wind, 0.0, aileron_input,
         -0.00380800071177 + -0.409 * b / (2 * airspeed) * state2.ang_rate_x +
         0.039 * b / (2 * airspeed) * state2.ang_rate_z +
         0.12 * aileron_input.aileron_deflection),
        (state2, wind, 1.0, aileron_input,
         -0.003067251004494 + -0.407 * b / (2 * airspeed) * state2.ang_rate_x +
         0.158 * b / (2 * airspeed) * state2.ang_rate_z +
         0.12 * aileron_input.aileron_deflection)
    ]
Beispiel #4
0
def body2wind_test_cases():
    state1 = State()
    vec1 = np.array([1.0, 0.0, 0.0])
    wind1 = np.zeros(6)
    expect1 = np.array([1.0, 0.0, 0.0])

    state2 = State()
    state2.vx = 10.0
    vec2 = np.array([1.0, 0.0, 0.0])
    wind2 = np.array([0.0, 10.0, 0.0])
    expect2 = np.array([np.sqrt(2.0) / 2.0, -np.sqrt(2.0) / 2.0, 0.0])

    state3 = State()
    state3.vx = 10.0
    vec3 = np.array([0.0, 1.0, 0.0])
    wind3 = np.array([0.0, 10.0, 0.0])
    expect3 = np.array([np.sqrt(2.0) / 2.0, np.sqrt(2.0) / 2.0, 0.0])

    state4 = State()
    state4.vx = 10.0
    state4.vz = 10.0
    vec4 = np.array([1.0, 0.0, 0.0])
    wind4 = np.array([0.0, 0.0, 0.0])
    expect4 = np.array([np.sqrt(2.0) / 2.0, 0.0, -np.sqrt(2.0) / 2.0])
    return [(state1, vec1, wind1, expect1), (state2, vec2, wind2, expect2),
            (state3, vec3, wind3, expect3), (state4, vec4, wind4, expect4)]
Beispiel #5
0
def test_skywalkerX8_force_x_dir():
    control_input = ControlInput()
    control_input.throttle = 0.0
    t = 0
    state = State()
    state.vx = 20.0

    for j in range(3):
        state.pitch = state.pitch + 0.05
        state.roll = state.roll + 0.05
        state.yaw = state.yaw + 0.05
        x_update = np.zeros(11)
        constants = SkywalkerX8Constants()
        for i in range(0, 11):
            control_input.throttle = i * 0.1
            prop = IcedSkywalkerX8Properties(control_input)
            params = {"prop": prop, "wind": no_wind()}
            update = dynamics_kinetmatics_update(t,
                                                 x=state.state,
                                                 u=control_input.control_input,
                                                 params=params)
            x_update[i] = update[6]

        S_p = constants.propeller_area
        C_p = constants.motor_efficiency_fact
        k_m = constants.motor_constant
        m = constants.mass
        K = 2 * m / (AIR_DENSITY * S_p * C_p * k_m**2)
        for i in range(0, 10):
            throttle_0 = i * 0.1
            throttle_1 = (i + 1) * 0.1
            assert np.allclose(K * (x_update[i + 1] - x_update[i]),
                               throttle_1**2 - throttle_0**2)
def test_interconnected_system():
    control_input = ControlInput()
    control_input.throttle = 0.5
    wind_model = no_wind()
    state = State()
    state.vx = 20
    prop = IcedSkywalkerX8Properties(control_input)
    outputs = [
        "x", "y", "z", "roll", "pitch", "yaw", "vx", "vy", "vz", "ang_rate_x",
        "ang_rate_y", "ang_rate_z"
    ]
    aircraft_model = build_nonlin_sys(prop, wind_model, outputs)

    initial_control_input_state = ControlInput()
    initial_control_input_state.throttle = 0.4
    motor_time_constant = 0.001
    elevon_time_constant = 0.001
    actuator_model = build_flying_wing_actuator_system(elevon_time_constant,
                                                       motor_time_constant)
    x0 = np.concatenate(
        (initial_control_input_state.control_input, state.state))
    connected_system = add_actuator(actuator_model, aircraft_model)
    t = np.linspace(0.0, 0.5, 10, endpoint=True)
    u = np.array([
        control_input.control_input,
    ] * len(t)).transpose()
    T, yout_without_actuator = input_output_response(aircraft_model,
                                                     t,
                                                     U=u,
                                                     X0=state.state)
    T, yout_with_actuator = input_output_response(connected_system,
                                                  t,
                                                  U=u,
                                                  X0=x0)
    assert np.allclose(yout_with_actuator[6, :],
                       yout_without_actuator[6, :],
                       atol=5.e-3)
    assert np.allclose(yout_with_actuator[7, :],
                       yout_without_actuator[7, :],
                       atol=5.e-3)
    assert np.allclose(yout_with_actuator[8, :],
                       yout_without_actuator[8, :],
                       atol=5.e-3)
    assert np.allclose(yout_with_actuator[9, :],
                       yout_without_actuator[9, :],
                       atol=5.e-3)
    assert np.allclose(yout_with_actuator[10, :],
                       yout_without_actuator[10, :],
                       atol=5.e-3)
    assert np.allclose(yout_with_actuator[11, :],
                       yout_without_actuator[11, :],
                       atol=5.e-3)
def lift_coeff_test_cases():
    constants = SkywalkerX8Constants()
    c = constants.mean_chord
    state1 = State()
    state1.vx = 20.0
    state1.vz = 0.0
    state2 = State()
    state2.vx = 20.0
    state2.vz = 0.0
    state2.ang_rate_y = 5 * np.pi / 180
    wind1 = np.zeros(6)
    wind2 = np.zeros(6)
    wind3 = np.zeros(6)
    wind2[0] = 1.0
    wind2[2] = -19.0 * np.tan(8 * np.pi / 180.0)
    wind3[0] = 1.0
    wind3[2] = -19.0 * np.tan(8 * np.pi / 180.0)
    wind3[4] = 3 * np.pi / 180
    ang_rate_y2 = state2.ang_rate_y - wind3[4]
    airspeed2 = np.sqrt(np.sum(calc_airspeed(state2, wind2)**2))
    zero_input = ControlInput()
    elevator_input = ControlInput()
    elevator_input.elevator_deflection = 2.0 * np.pi / 180.0

    return [(state1, wind1, 0.0, zero_input, 0.030075562375465),
            (state1, wind1, 1.0, zero_input, 0.018798581619545),
            (state1, wind2, 0.0, zero_input, 0.609296679062686),
            (state1, wind2, 1.0, zero_input, 0.454153721254944),
            (state1, wind1, 0.0, elevator_input,
             0.030075562375465 + 0.278 * elevator_input.elevator_deflection),
            (state1, wind1, 1.0, elevator_input,
             0.018798581619545 + 0.278 * elevator_input.elevator_deflection),
            (state2, wind3, 0.0, elevator_input,
             0.609296679062686 + 4.60 * c / (2 * airspeed2) * ang_rate_y2 +
             0.278 * elevator_input.elevator_deflection),
            (state2, wind3, 1.0, elevator_input,
             0.454153721254944 - 3.51 * c / (2 * airspeed2) * ang_rate_y2 +
             0.278 * elevator_input.elevator_deflection)]
Beispiel #8
0
def main():
    # Initialize gain scheduled controller
    # Using two simple P-controllers, see also fcat.longitudinal_controller for more complicated examples
    # Note that this is just an example on how to build and simulate an aircraft system
    # The controllers are simple not tuned to get desired reference tracking

    controllers = [
        SaturatedStateSpaceMatricesGS(
            A = -1*np.eye(1),
            B = np.zeros((1,1)),
            C = np.eye(1),
            D = np.zeros((1,1)),
            upper = 1,
            lower = -1,
            switch_signal = 0.3
        ), 
        SaturatedStateSpaceMatricesGS(
            A = -1*np.eye(1),
            B = np.zeros((1,1)),
            C = np.eye(1),
            D = np.zeros((1,1)),
            upper = 1,
            lower = -1,
            switch_signal = 0.6
        )
    ]
    # Using similar controllers for simplicity
    lat_gs_controller = init_gs_controller(controllers, Direction.LATERAL, 'icing')
    lon_gs_controller = init_gs_controller(controllers, Direction.LONGITUDINAL, 'icing')
    airspeed_pi_controller = init_airspeed_controller()
    control_input = ControlInput()
    control_input.throttle = 0.5
    state = State()
    state.vx = 20
    prop = IcedSkywalkerX8Properties(control_input)
    
    aircraft_model = build_nonlin_sys(prop, no_wind(), outputs=State.names+['icing', 'airspeed']) 
    motor_time_constant = 0.001
    elevon_time_constant = 0.001

    actuator_model = build_flying_wing_actuator_system(elevon_time_constant, motor_time_constant)
    closed_loop = build_closed_loop(actuator_model, aircraft_model, lon_gs_controller, lat_gs_controller, airspeed_pi_controller)

    X0 = get_init_vector(closed_loop, control_input, state)
    constant_input = np.array([20, 0.04, -0.00033310605950459315])
    sim_time = 15
    t = np.linspace(0, sim_time, sim_time*5, endpoint=True)
    u = np.array([constant_input, ]*(len(t))).transpose()
    T, yout_non_lin, _ = input_output_response(
        closed_loop, U=u, T=t, X0=X0, return_x=True, method='BDF')
Beispiel #9
0
def test_dynamics_forces():
    control_input = ControlInput()
    prop = SimpleTestAircraftNoMoments(control_input)
    t = 0
    for i in range(-50, 101, 50):
        control_input.throttle = 0.8
        control_input.elevator_deflection = i
        control_input.aileron_deflection = i
        control_input.rudder_deflection = i

        state = State()
        state.vx = 20.0
        state.vy = 1
        state.vz = 0
        params = {"prop": prop, "wind": no_wind()}
        update = dynamics_kinetmatics_update(t=t,
                                             x=state.state,
                                             u=control_input.control_input,
                                             params=params)
        V_a = np.sqrt(np.sum(calc_airspeed(state, params['wind'].get(0.0))**2))

        forces_aero_wind_frame = np.array([
            -np.abs(control_input.elevator_deflection),
            control_input.aileron_deflection, -control_input.rudder_deflection
        ])
        forces_aero_body_frame = wind2body(forces_aero_wind_frame, state,
                                           params['wind'].get(0))
        force_propulsion = np.array([(2 * control_input.throttle)**2 - V_a**2,
                                     0, 0])
        force_gravity = inertial2body(
            np.array([0, 0, prop.mass() * GRAVITY_CONST]), state)
        forces_body = forces_aero_body_frame + force_propulsion + force_gravity
        vx_update_expect = (1 / prop.mass()) * forces_body[0]
        vy_update_expect = (1 / prop.mass()) * forces_body[1]
        vz_update_expect = (1 / prop.mass()) * forces_body[2]
        # No moments
        ang_rate_x_update_expect = 0
        ang_rate_y_update_expect = 0
        ang_rate_z_update_expect = 0

        assert np.allclose(vx_update_expect, update[6])
        assert np.allclose(vy_update_expect, update[7])
        assert np.allclose(vz_update_expect, update[8])
        assert np.allclose(ang_rate_x_update_expect, update[9])
        assert np.allclose(ang_rate_y_update_expect, update[10])
        assert np.allclose(ang_rate_z_update_expect, update[11])
Beispiel #10
0
def test_dynamics_moments():
    control_input = ControlInput()
    t = 0

    for i in range(-50, 51, 50):
        control_input.throttle = i
        control_input.elevator_deflection = i
        control_input.aileron_deflection = i
        control_input.rudder_deflection = i
        prop = SimpleTestAircraftNoForces(control_input)

        state = State()
        state.vx = 20.0
        state.vy = 1
        state.vz = 0
        state.ang_rate_x = 0.157079633
        state.ang_rate_y = 0.157079633
        state.ang_rate_z = 0.157079633
        params = {"prop": prop, "wind": no_wind()}
        update = dynamics_kinetmatics_update(t=t,
                                             x=state.state,
                                             u=control_input.control_input,
                                             params=params)
        moments_aero = np.array([
            control_input.elevator_deflection,
            control_input.aileron_deflection, control_input.rudder_deflection
        ])
        omega = np.array(
            [state.ang_rate_x, state.ang_rate_y, state.ang_rate_z])
        coreolis_term = prop.inv_inertia_matrix().dot(
            np.cross(omega,
                     prop.inertia_matrix().dot(omega)))

        ang_rate_x_update_expect = (2 / 3) * moments_aero[0] - (
            1 / 3) * moments_aero[2] - coreolis_term[0]
        ang_rate_y_update_expect = (1 / 2) * moments_aero[1] - coreolis_term[1]
        ang_rate_z_update_expect = (2 / 3) * moments_aero[2] - (
            1 / 3) * moments_aero[0] - coreolis_term[2]
        assert np.allclose(ang_rate_x_update_expect, update[9])
        assert np.allclose(ang_rate_y_update_expect, update[10])
        assert np.allclose(ang_rate_z_update_expect, update[11])
def drag_coeff_test_cases():
    state1 = State()
    state1.vx = 20.0
    state1.vz = 0.0
    wind1 = np.zeros(6)
    wind2 = np.zeros(6)
    wind2[0] = 1.0
    wind2[2] = -19.0 * np.tan(6 * np.pi / 180.0)
    zero_input = ControlInput()

    elevator_input = ControlInput()
    elevator_input.elevator_deflection = 2.0 * np.pi / 180.0

    return [(state1, wind1, 0.0, zero_input, 0.015039166436721),
            (state1, wind1, 1.0, zero_input, 0.043224285541117),
            (state1, wind2, 0.0, zero_input, 0.027939336576642),
            (state1, wind2, 1.0, zero_input, 0.082879203470842),
            (state1, wind1, 0.0, elevator_input,
             0.015039166436721 + 0.0633 * elevator_input.elevator_deflection),
            (state1, wind1, 1.0, elevator_input,
             0.043224285541117 + 0.0633 * elevator_input.elevator_deflection)]
def pitch_moment_coeff_test_cases():
    state1 = State()
    state1.vx = 20.0
    state1.vz = 0.0
    wind1 = np.zeros(6)
    wind2 = np.zeros(6)
    wind2[0] = 1.0
    wind2[2] = -19.0 * np.tan(6 * np.pi / 180.0)
    zero_input = ControlInput()

    elevator_input = ControlInput()
    elevator_input.elevator_deflection = 2.0 * np.pi / 180.0

    return [(state1, wind1, 0.0, zero_input, 0.001161535578433),
            (state1, wind1, 1.0, zero_input, -0.004297270367523),
            (state1, wind2, 0.0, zero_input, -0.064477317568596),
            (state1, wind2, 1.0, zero_input, -0.01808304889307),
            (state1, wind1, 0.0, elevator_input,
             0.001161535578433 - 0.206 * elevator_input.elevator_deflection),
            (state1, wind1, 1.0, elevator_input,
             -0.004297270367523 - 0.206 * elevator_input.elevator_deflection)]
Beispiel #13
0
def test_kinematics():
    control_input = ControlInput()
    prop = FrictionlessBall(control_input)
    outputs = [
        "x", "y", "z", "roll", "pitch", "yaw", "vx", "vy", "vz", "ang_rate_x",
        "ang_rate_y", "ang_rate_z"
    ]
    system = build_nonlin_sys(prop, no_wind(), outputs)
    t = np.linspace(0.0, 10, 500, endpoint=True)
    state = State()
    state.vx = 20.0
    state.vy = 1
    for i in range(3):
        state.roll = 0
        state.pitch = 0
        state.yaw = 0
        if i == 0:
            state.ang_rate_x = 0.157079633
            state.ang_rate_y = 0
            state.ang_rate_z = 0
        elif i == 1:
            state.ang_rate_x = 0
            state.ang_rate_y = 0.157079633
            state.ang_rate_z = 0
        elif i == 2:
            state.ang_rate_x = 0
            state.ang_rate_y = 0
            state.ang_rate_z = 0.157079633

        T, yout = input_output_response(system, t, U=0, X0=state.state)
        pos = np.array(yout[:3])
        eul_ang = np.array(yout[3:6])

        vel_inertial = np.array(
            [np.zeros(len(t)),
             np.zeros(len(t)),
             np.zeros(len(t))])
        for j in range(len(vel_inertial[0])):
            state.roll = yout[3, j]
            state.pitch = yout[4, j]
            state.yaw = yout[5, j]
            vel = np.array([yout[6, j], yout[7, j], yout[8, j]])
            vel_inertial_elem = body2inertial(vel, state)
            vel_inertial[0, j] = vel_inertial_elem[0]
            vel_inertial[1, j] = vel_inertial_elem[1]
            vel_inertial[2, j] = vel_inertial_elem[2]

        vx_inertial_expect = 20 * np.ones(len(t))
        vy_inertial_expect = 1 * np.ones(len(t))
        vz_inertial_expect = GRAVITY_CONST * t
        x_expect = 20 * t
        y_expect = 1 * t
        z_expect = 0.5 * GRAVITY_CONST * t**2
        roll_expect = state.ang_rate_x * t
        pitch_expect = state.ang_rate_y * t
        yaw_expect = state.ang_rate_z * t
        assert np.allclose(vx_inertial_expect, vel_inertial[0], atol=7e-3)
        assert np.allclose(vy_inertial_expect, vel_inertial[1], atol=5e-3)
        assert np.allclose(vz_inertial_expect, vel_inertial[2], atol=8e-3)
        assert np.allclose(x_expect, pos[0], atol=8e-2)
        assert np.allclose(y_expect, pos[1], atol=5e-2)
        assert np.allclose(z_expect, pos[2], atol=7e-2)
        assert np.allclose(roll_expect, eul_ang[0], atol=1e-3)
        assert np.allclose(pitch_expect, eul_ang[1], atol=1e-3)
        assert np.allclose(yaw_expect, eul_ang[2], atol=1e-3)