def __init__(self,
                 nema_size=17,
                 base_motor_d=6.,
                 base_d=4.,
                 base_h=16.,
                 wall_thick=4.,
                 motor_thick=4.,
                 reinf_thick=4.,
                 motor_min_h=10.,
                 motor_max_h=20.,
                 motor_xtr_space=2.,
                 bolt_wall_d=4.,
                 bolt1_wall_d=5.,
                 bolt_wall_sep=30.,
                 chmf_r=1.,
                 opt_sides=1,
                 axis_h=VZ,
                 axis_d=VX,
                 axis_w=None,
                 pos_h=1,
                 pos_d=3,
                 pos_w=0,
                 pos=V0,
                 name=''):
        if axis_w is None or axis_w == V0:
            axis_w = axis_h.cross(axis_d)  #vector product

        default_name = 'base'
        self.set_name(name, default_name, change=0)
        Obj3D.__init__(self, axis_d, axis_w, axis_h, self.name)

        # save the arguments as attributes:
        frame = inspect.currentframe()
        args, _, _, values = inspect.getargvalues(frame)
        for i in args:
            if not hasattr(self, i):
                setattr(self, i, values[i])

        self.pos = FreeCAD.Vector(0, 0, 0)
        self.position = pos

        # normal axes to print without support
        self.prnt_ax = self.axis_h

        self.motor_w = kcomp.NEMA_W[nema_size]
        self.motor_bolt_sep = kcomp.NEMA_BOLT_SEP[nema_size]
        self.motor_bolt_d = kcomp.NEMA_BOLT_D[nema_size]

        self.base_motor_h = motor_thick + motor_max_h + 2 * bolt_wall_d + 30.

        # calculation of the bolt to hold the base to the profile
        self.boltshank_r_tol = kcomp.D912[bolt1_wall_d]['shank_r_tol']
        self.bolthead_r = kcomp.D912[bolt1_wall_d]['head_l']
        self.bolthead_r_tol = kcomp.D912[bolt1_wall_d]['head_r']
        self.bolthead_l = kcomp.D912[bolt1_wall_d]['head_l']

        # calculation of the bolt wall d
        self.boltwallshank_r_tol = kcomp.D912[bolt_wall_d]['shank_r_tol']
        self.boltwallhead_l = kcomp.D912[bolt_wall_d]['head_l']
        self.boltwallhead_r = kcomp.D912[bolt_wall_d]['head_r']
        self.washer_thick = kcomp.WASH_D125_T[bolt_wall_d]

        # calculation of the bolt wall separation
        self.max_bolt_wall_sep = self.motor_w - 2 * self.boltwallhead_r
        if bolt_wall_sep == 0:
            self.bolt_wall_sep = self.max_bolt_wall_sep
        elif bolt_wall_sep > self.max_bolt_wall_sep:
            logger.debug('bolt separation too large:' + str(bolt_wall_sep))
            self.bolt_wall_sep = self.max_bolt_wall_sep
            logger.debug('taking largest value:' + str(self.bolt_wall_sep))
        elif bolt_wall_sep < 4 * self.boltwallhead_r:
            logger.debug('bolt separation too short:' + str(bolt_wall_sep))
            self.bolt_wall_sep = self.self.max_bolt_wall_sep
            logger.debug('taking smallest value:' + str(self.bolt_wall_sep))

        # distance from the motor to the inner wall (in axis_d)
        self.motor_inwall_space = motor_xtr_space + self.boltwallhead_l + self.washer_thick

        # making the big box that will contain everything and will be cut
        self.tot_h = wall_thick + base_h + self.base_motor_h
        self.tot_d = base_d + 2 * self.bolthead_r
        if opt_sides == 0:
            self.tot_w = 2 * reinf_thick + self.motor_w + 2 * motor_xtr_space
        else:
            self.tot_w = 2 * reinf_thick + self.motor_w + 2 * motor_xtr_space + 4 * self.bolthead_r_tol + 8.

        # definition of which axis is symmetrical
        self.h0_cen = 0
        self.w0_cen = 1  # symmetrical
        self.d0_cen = 0

        # vectors from the origin to the points along axis_h
        self.h_o[0] = V0
        self.h_o[1] = self.vec_h(wall_thick)
        self.h_o[2] = self.vec_h(wall_thick + 2 * self.bolthead_r)
        self.h_o[3] = self.vec_h(wall_thick + base_h)
        self.h_o[4] = self.vec_h(wall_thick + base_h + motor_thick)
        self.h_o[5] = self.vec_h(wall_thick + base_h + motor_thick +
                                 motor_min_h)
        self.h_o[6] = self.vec_h(wall_thick + base_h + motor_thick)
        self.h_o[7] = self.vec_h(wall_thick + base_h + motor_thick +
                                 (motor_min_h + motor_max_h) / 4.)
        self.h_o[8] = self.vec_h(wall_thick + base_h + motor_thick + 2 *
                                 (motor_min_h + motor_max_h) / 4.)
        self.h_o[9] = self.vec_h(wall_thick + base_h + motor_thick + 3 *
                                 (motor_min_h + motor_max_h) / 4.)
        self.h_o[10] = self.vec_h(wall_thick + base_h + motor_thick +
                                  (motor_min_h + motor_max_h))
        self.h_o[11] = self.vec_h(wall_thick + base_h + motor_thick + 5 *
                                  (motor_min_h + motor_max_h) / 4.)
        self.h_o[12] = self.vec_h(wall_thick + base_h + motor_thick +
                                  motor_max_h)
        self.h_o[13] = self.vec_h(self.tot_h)

        # position along axis_d
        self.d_o[0] = V0
        self.d_o[1] = self.vec_d(base_d)
        self.d_o[2] = self.vec_d(base_motor_d)
        self.d_o[3] = self.vec_d(self.tot_d / 2.)
        self.d_o[4] = self.vec_d(base_d + self.bolthead_r_tol)
        self.d_o[5] = self.vec_d(self.tot_d)

        # vectors from the origin to the points along axis_w
        if opt_sides == 0:
            self.w_o[0] = V0
            self.w_o[1] = self.vec_w(-self.bolt_wall_sep / 2.)
            self.w_o[2] = self.vec_w(-self.motor_bolt_sep / 2.)
            self.w_o[3] = self.vec_w(-self.tot_w / 2.)
        else:
            self.w_o[0] = V0
            self.w_o[1] = self.vec_w(-self.bolt_wall_sep / 2.)
            self.w_o[2] = self.vec_w(-self.motor_bolt_sep / 2.)
            self.w_o[3] = self.vec_w(
                -(2 * reinf_thick + self.motor_w + 2 * motor_xtr_space) / 2.)
            self.w_o[4] = self.vec_w(
                -(2 * reinf_thick + self.motor_w + 2 * motor_xtr_space +
                  2 * self.bolthead_r_tol + 4.) / 2.)
            self.w_o[5] = self.vec_w(-self.tot_w / 2.)

        # calculates the position of the origin, and keeps it in attribute pos_o
        self.set_pos_o()

        # make the whole box
        if opt_sides == 0:
            shp_box = fcfun.shp_box_dir(box_w=self.tot_w,
                                        box_d=self.tot_d,
                                        box_h=self.tot_h,
                                        fc_axis_h=self.axis_h,
                                        fc_axis_d=self.axis_d,
                                        cw=1,
                                        cd=0,
                                        ch=0,
                                        pos=self.pos_o)
            super().add_child(shp_box, 1, 'shp_box')

            shp_box_int = fcfun.shp_box_dir(box_w=self.tot_w,
                                            box_d=self.tot_d,
                                            box_h=base_h,
                                            fc_axis_h=self.axis_h,
                                            fc_axis_d=self.axis_d,
                                            cw=1,
                                            cd=0,
                                            ch=0,
                                            pos=self.get_pos_dwh(1, 0, 1))
            super().add_child(shp_box_int, 0, 'shp_box_int')

            shp_box_ext = fcfun.shp_box_dir(box_w=self.tot_w,
                                            box_d=self.tot_d,
                                            box_h=self.base_motor_h,
                                            fc_axis_h=self.axis_h,
                                            fc_axis_d=self.axis_d,
                                            cw=1,
                                            cd=0,
                                            ch=0,
                                            pos=self.get_pos_dwh(2, 0, 3))
            super().add_child(shp_box_ext, 0, 'shp_box_ext')

            shp_box_init = fcfun.shp_box_dir(box_w=self.tot_w +
                                             2 * self.bolthead_r_tol,
                                             box_d=self.tot_d,
                                             box_h=wall_thick,
                                             fc_axis_h=self.axis_h,
                                             fc_axis_d=self.axis_d,
                                             cw=1,
                                             cd=0,
                                             ch=0,
                                             pos=self.get_pos_dwh(5, 0, 0))
            super().add_child(shp_box_init, 0, 'shp_box_init')

            # holes to hold the profile
            shp_hole1 = fcfun.shp_cylcenxtr(r=self.boltshank_r_tol,
                                            h=wall_thick,
                                            normal=self.axis_h,
                                            ch=0,
                                            xtr_top=1,
                                            xtr_bot=1,
                                            pos=self.get_pos_dwh(4, -2, 0))
            super().add_child(shp_hole1, 0, 'shp_hole1')
            shp_hole2 = fcfun.shp_cylcenxtr(r=self.boltshank_r_tol,
                                            h=wall_thick,
                                            normal=self.axis_h,
                                            ch=0,
                                            xtr_top=1,
                                            xtr_bot=1,
                                            pos=self.get_pos_dwh(4, 2, 0))
            super().add_child(shp_hole2, 0, 'shp_hole2')

            # holes to hold the Nema Motor Holder
            shp_cen_bolt1 = fcfun.shp_bolt_dir(
                r_shank=self.boltwallshank_r_tol,
                l_bolt=base_motor_d,
                r_head=self.boltwallhead_r,
                l_head=self.boltwallhead_l,
                xtr_head=1,
                xtr_shank=1,
                fc_normal=self.axis_d,
                pos_n=0,
                pos=self.get_pos_dwh(0, -1, 6))
            super().add_child(shp_cen_bolt1, 0, 'shp_cen_bolt1')
            shp_cen_bolt2 = fcfun.shp_bolt_dir(
                r_shank=self.boltwallshank_r_tol,
                l_bolt=base_motor_d,
                r_head=self.boltwallhead_r,
                l_head=self.boltwallhead_l,
                xtr_head=1,
                xtr_shank=1,
                fc_normal=self.axis_d,
                pos_n=0,
                pos=self.get_pos_dwh(0, 1, 6))
            super().add_child(shp_cen_bolt2, 0, 'shp_cen_bolt2')
            shp_cen_bolt3 = fcfun.shp_bolt_dir(
                r_shank=self.boltwallshank_r_tol,
                l_bolt=base_motor_d,
                r_head=self.boltwallhead_r,
                l_head=self.boltwallhead_l,
                xtr_head=1,
                xtr_shank=1,
                fc_normal=self.axis_d,
                pos_n=0,
                pos=self.get_pos_dwh(0, -1, 7))
            super().add_child(shp_cen_bolt3, 0, 'shp_cen_bolt3')
            shp_cen_bolt4 = fcfun.shp_bolt_dir(
                r_shank=self.boltwallshank_r_tol,
                l_bolt=base_motor_d,
                r_head=self.boltwallhead_r,
                l_head=self.boltwallhead_l,
                xtr_head=1,
                xtr_shank=1,
                fc_normal=self.axis_d,
                pos_n=0,
                pos=self.get_pos_dwh(0, 1, 7))
            super().add_child(shp_cen_bolt4, 0, 'shp_cen_bolt4')
            shp_cen_bolt5 = fcfun.shp_bolt_dir(
                r_shank=self.boltwallshank_r_tol,
                l_bolt=base_motor_d,
                r_head=self.boltwallhead_r,
                l_head=self.boltwallhead_l,
                xtr_head=1,
                xtr_shank=1,
                fc_normal=self.axis_d,
                pos_n=0,
                pos=self.get_pos_dwh(0, -1, 8))
            super().add_child(shp_cen_bolt5, 0, 'shp_cen_bolt5')
            shp_cen_bolt6 = fcfun.shp_bolt_dir(
                r_shank=self.boltwallshank_r_tol,
                l_bolt=base_motor_d,
                r_head=self.boltwallhead_r,
                l_head=self.boltwallhead_l,
                xtr_head=1,
                xtr_shank=1,
                fc_normal=self.axis_d,
                pos_n=0,
                pos=self.get_pos_dwh(0, 1, 8))
            super().add_child(shp_cen_bolt6, 0, 'shp_cen_bolt6')
            shp_cen_bolt7 = fcfun.shp_bolt_dir(
                r_shank=self.boltwallshank_r_tol,
                l_bolt=base_motor_d,
                r_head=self.boltwallhead_r,
                l_head=self.boltwallhead_l,
                xtr_head=1,
                xtr_shank=1,
                fc_normal=self.axis_d,
                pos_n=0,
                pos=self.get_pos_dwh(0, -1, 9))
            super().add_child(shp_cen_bolt7, 0, 'shp_cen_bolt7')
            shp_cen_bolt8 = fcfun.shp_bolt_dir(
                r_shank=self.boltwallshank_r_tol,
                l_bolt=base_motor_d,
                r_head=self.boltwallhead_r,
                l_head=self.boltwallhead_l,
                xtr_head=1,
                xtr_shank=1,
                fc_normal=self.axis_d,
                pos_n=0,
                pos=self.get_pos_dwh(0, 1, 9))
            super().add_child(shp_cen_bolt8, 0, 'shp_cen_bolt8')
            shp_cen_bolt9 = fcfun.shp_bolt_dir(
                r_shank=self.boltwallshank_r_tol,
                l_bolt=base_motor_d,
                r_head=self.boltwallhead_r,
                l_head=self.boltwallhead_l,
                xtr_head=1,
                xtr_shank=1,
                fc_normal=self.axis_d,
                pos_n=0,
                pos=self.get_pos_dwh(0, -1, 10))
            super().add_child(shp_cen_bolt9, 0, 'shp_cen_bolt9')
            shp_cen_bolt10 = fcfun.shp_bolt_dir(
                r_shank=self.boltwallshank_r_tol,
                l_bolt=base_motor_d,
                r_head=self.boltwallhead_r,
                l_head=self.boltwallhead_l,
                xtr_head=1,
                xtr_shank=1,
                fc_normal=self.axis_d,
                pos_n=0,
                pos=self.get_pos_dwh(0, 1, 10))
            super().add_child(shp_cen_bolt10, 0, 'shp_cen_bolt10')
            shp_cen_bolt11 = fcfun.shp_bolt_dir(
                r_shank=self.boltwallshank_r_tol,
                l_bolt=base_motor_d,
                r_head=self.boltwallhead_r,
                l_head=self.boltwallhead_l,
                xtr_head=1,
                xtr_shank=1,
                fc_normal=self.axis_d,
                pos_n=0,
                pos=self.get_pos_dwh(0, -1, 11))
            super().add_child(shp_cen_bolt11, 0, 'shp_cen_bolt11')
            shp_cen_bolt12 = fcfun.shp_bolt_dir(
                r_shank=self.boltwallshank_r_tol,
                l_bolt=base_motor_d,
                r_head=self.boltwallhead_r,
                l_head=self.boltwallhead_l,
                xtr_head=1,
                xtr_shank=1,
                fc_normal=self.axis_d,
                pos_n=0,
                pos=self.get_pos_dwh(0, 1, 11))
            super().add_child(shp_cen_bolt12, 0, 'shp_cen_bolt12')
        else:
            shp_box = fcfun.shp_box_dir(box_w=self.tot_w,
                                        box_d=self.tot_d,
                                        box_h=self.tot_h,
                                        fc_axis_h=self.axis_h,
                                        fc_axis_d=self.axis_d,
                                        cw=1,
                                        cd=0,
                                        ch=0,
                                        pos=self.pos_o)
            super().add_child(shp_box, 1, 'shp_box')

            shp_box_int = fcfun.shp_box_dir(box_w=self.tot_w,
                                            box_d=self.tot_d,
                                            box_h=base_h,
                                            fc_axis_h=self.axis_h,
                                            fc_axis_d=self.axis_d,
                                            cw=1,
                                            cd=0,
                                            ch=0,
                                            pos=self.get_pos_dwh(1, 0, 1))
            super().add_child(shp_box_int, 0, 'shp_box_int')

            shp_box_ext = fcfun.shp_box_dir(box_w=self.tot_w,
                                            box_d=self.tot_d,
                                            box_h=self.base_motor_h,
                                            fc_axis_h=self.axis_h,
                                            fc_axis_d=self.axis_d,
                                            cw=1,
                                            cd=0,
                                            ch=0,
                                            pos=self.get_pos_dwh(2, 0, 3))
            super().add_child(shp_box_ext, 0, 'shp_box_ext')

            shp_box_init = fcfun.shp_box_dir(box_w=self.tot_w,
                                             box_d=self.tot_d,
                                             box_h=wall_thick,
                                             fc_axis_h=self.axis_h,
                                             fc_axis_d=self.axis_d,
                                             cw=1,
                                             cd=0,
                                             ch=0,
                                             pos=self.get_pos_dwh(5, 0, 0))
            super().add_child(shp_box_init, 0, 'shp_box_init')

            shp_box_lat1 = fcfun.shp_box_dir(box_w=2 * +self.bolthead_r_tol +
                                             4.,
                                             box_d=self.tot_d,
                                             box_h=self.tot_h,
                                             fc_axis_h=self.axis_h,
                                             fc_axis_d=self.axis_d,
                                             cw=1,
                                             cd=0,
                                             ch=0,
                                             pos=self.get_pos_dwh(0, -4, 1))
            super().add_child(shp_box_lat1, 0, 'shp_box_lat1')
            shp_box_lat2 = fcfun.shp_box_dir(box_w=2 * +self.bolthead_r_tol +
                                             4.,
                                             box_d=self.tot_d,
                                             box_h=self.tot_h,
                                             fc_axis_h=self.axis_h,
                                             fc_axis_d=self.axis_d,
                                             cw=1,
                                             cd=0,
                                             ch=0,
                                             pos=self.get_pos_dwh(0, 4, 1))
            super().add_child(shp_box_lat2, 0, 'shp_box_lat2')

            # holes to hold the profile # self.get_d_ab(5,4).x
            shp_hole1 = fcfun.shp_stadium_dir(
                self.tot_d - 2 * ((self.d_o[5] - self.d_o[4]).Length),
                radius=self.boltshank_r_tol,
                height=wall_thick,
                fc_axis_h=self.axis_h,
                fc_axis_l=self.axis_d.negative(),
                fc_axis_s=V0,
                ref_l=2,
                ref_s=1,
                ref_h=2,
                xtr_nh=1,
                pos=self.get_pos_dwh(4, -4, 0))
            super().add_child(shp_hole1, 0, 'shp_hole1')

            shp_hole2 = fcfun.shp_stadium_dir(
                self.tot_d - 2 * ((self.d_o[5] - self.d_o[4]).Length),
                radius=self.boltshank_r_tol,
                height=wall_thick,
                fc_axis_h=self.axis_h,
                fc_axis_l=self.axis_d.negative(),
                fc_axis_s=V0,
                ref_l=2,
                ref_s=1,
                ref_h=2,
                xtr_nh=1,
                pos=self.get_pos_dwh(4, 4, 0))
            super().add_child(shp_hole2, 0, 'shp_hole2')

            shp_hole3 = fcfun.shp_cylcenxtr(r=self.boltshank_r_tol,
                                            h=wall_thick,
                                            normal=self.axis_h,
                                            ch=0,
                                            xtr_top=1,
                                            xtr_bot=1,
                                            pos=self.get_pos_dwh(4, -2, 0))
            super().add_child(shp_hole3, 0, 'shp_hole3')
            shp_hole4 = fcfun.shp_cylcenxtr(r=self.boltshank_r_tol,
                                            h=wall_thick,
                                            normal=self.axis_h,
                                            ch=0,
                                            xtr_top=1,
                                            xtr_bot=1,
                                            pos=self.get_pos_dwh(4, 2, 0))
            super().add_child(shp_hole4, 0, 'shp_hole4')

            # holes to hold the Nema Motor Holder
            shp_cen_bolt1 = fcfun.shp_bolt_dir(
                r_shank=self.boltwallshank_r_tol,
                l_bolt=base_motor_d,
                r_head=self.boltwallhead_r,
                l_head=self.boltwallhead_l,
                xtr_head=1,
                xtr_shank=1,
                fc_normal=self.axis_d,
                pos_n=0,
                pos=self.get_pos_dwh(0, -1, 6))
            super().add_child(shp_cen_bolt1, 0, 'shp_cen_bolt1')
            shp_cen_bolt2 = fcfun.shp_bolt_dir(
                r_shank=self.boltwallshank_r_tol,
                l_bolt=base_motor_d,
                r_head=self.boltwallhead_r,
                l_head=self.boltwallhead_l,
                xtr_head=1,
                xtr_shank=1,
                fc_normal=self.axis_d,
                pos_n=0,
                pos=self.get_pos_dwh(0, 1, 6))
            super().add_child(shp_cen_bolt2, 0, 'shp_cen_bolt2')
            shp_cen_bolt3 = fcfun.shp_bolt_dir(
                r_shank=self.boltwallshank_r_tol,
                l_bolt=base_motor_d,
                r_head=self.boltwallhead_r,
                l_head=self.boltwallhead_l,
                xtr_head=1,
                xtr_shank=1,
                fc_normal=self.axis_d,
                pos_n=0,
                pos=self.get_pos_dwh(0, -1, 7))
            super().add_child(shp_cen_bolt3, 0, 'shp_cen_bolt3')
            shp_cen_bolt4 = fcfun.shp_bolt_dir(
                r_shank=self.boltwallshank_r_tol,
                l_bolt=base_motor_d,
                r_head=self.boltwallhead_r,
                l_head=self.boltwallhead_l,
                xtr_head=1,
                xtr_shank=1,
                fc_normal=self.axis_d,
                pos_n=0,
                pos=self.get_pos_dwh(0, 1, 7))
            super().add_child(shp_cen_bolt4, 0, 'shp_cen_bolt4')
            shp_cen_bolt5 = fcfun.shp_bolt_dir(
                r_shank=self.boltwallshank_r_tol,
                l_bolt=base_motor_d,
                r_head=self.boltwallhead_r,
                l_head=self.boltwallhead_l,
                xtr_head=1,
                xtr_shank=1,
                fc_normal=self.axis_d,
                pos_n=0,
                pos=self.get_pos_dwh(0, -1, 8))
            super().add_child(shp_cen_bolt5, 0, 'shp_cen_bolt5')
            shp_cen_bolt6 = fcfun.shp_bolt_dir(
                r_shank=self.boltwallshank_r_tol,
                l_bolt=base_motor_d,
                r_head=self.boltwallhead_r,
                l_head=self.boltwallhead_l,
                xtr_head=1,
                xtr_shank=1,
                fc_normal=self.axis_d,
                pos_n=0,
                pos=self.get_pos_dwh(0, 1, 8))
            super().add_child(shp_cen_bolt6, 0, 'shp_cen_bolt6')
            shp_cen_bolt7 = fcfun.shp_bolt_dir(
                r_shank=self.boltwallshank_r_tol,
                l_bolt=base_motor_d,
                r_head=self.boltwallhead_r,
                l_head=self.boltwallhead_l,
                xtr_head=1,
                xtr_shank=1,
                fc_normal=self.axis_d,
                pos_n=0,
                pos=self.get_pos_dwh(0, -1, 9))
            super().add_child(shp_cen_bolt7, 0, 'shp_cen_bolt7')
            shp_cen_bolt8 = fcfun.shp_bolt_dir(
                r_shank=self.boltwallshank_r_tol,
                l_bolt=base_motor_d,
                r_head=self.boltwallhead_r,
                l_head=self.boltwallhead_l,
                xtr_head=1,
                xtr_shank=1,
                fc_normal=self.axis_d,
                pos_n=0,
                pos=self.get_pos_dwh(0, 1, 9))
            super().add_child(shp_cen_bolt8, 0, 'shp_cen_bolt8')
            shp_cen_bolt9 = fcfun.shp_bolt_dir(
                r_shank=self.boltwallshank_r_tol,
                l_bolt=base_motor_d,
                r_head=self.boltwallhead_r,
                l_head=self.boltwallhead_l,
                xtr_head=1,
                xtr_shank=1,
                fc_normal=self.axis_d,
                pos_n=0,
                pos=self.get_pos_dwh(0, -1, 10))
            super().add_child(shp_cen_bolt9, 0, 'shp_cen_bolt9')
            shp_cen_bolt10 = fcfun.shp_bolt_dir(
                r_shank=self.boltwallshank_r_tol,
                l_bolt=base_motor_d,
                r_head=self.boltwallhead_r,
                l_head=self.boltwallhead_l,
                xtr_head=1,
                xtr_shank=1,
                fc_normal=self.axis_d,
                pos_n=0,
                pos=self.get_pos_dwh(0, 1, 10))
            super().add_child(shp_cen_bolt10, 0, 'shp_cen_bolt10')
            shp_cen_bolt11 = fcfun.shp_bolt_dir(
                r_shank=self.boltwallshank_r_tol,
                l_bolt=base_motor_d,
                r_head=self.boltwallhead_r,
                l_head=self.boltwallhead_l,
                xtr_head=1,
                xtr_shank=1,
                fc_normal=self.axis_d,
                pos_n=0,
                pos=self.get_pos_dwh(0, -1, 11))
            super().add_child(shp_cen_bolt11, 0, 'shp_cen_bolt11')
            shp_cen_bolt12 = fcfun.shp_bolt_dir(
                r_shank=self.boltwallshank_r_tol,
                l_bolt=base_motor_d,
                r_head=self.boltwallhead_r,
                l_head=self.boltwallhead_l,
                xtr_head=1,
                xtr_shank=1,
                fc_normal=self.axis_d,
                pos_n=0,
                pos=self.get_pos_dwh(0, 1, 11))
            super().add_child(shp_cen_bolt12, 0, 'shp_cen_bolt12')

        super().make_parent(name)
        chmf_reinf_r = min(base_motor_d - base_d, base_h)
        self.shp = fcfun.shp_filletchamfer_dirpt(self.shp,
                                                 self.axis_w,
                                                 fc_pt=self.get_pos_dwh(
                                                     2, 0, 3),
                                                 fillet=0,
                                                 radius=(chmf_reinf_r - TOL))
        if opt_sides == 0:
            for pt_w in (-3, 3):
                for pt_h in (0, 13):
                    self.shp = fcfun.shp_filletchamfer_dirpt(
                        self.shp,
                        self.axis_d,
                        fc_pt=self.get_pos_dwh(0, pt_w, pt_h),
                        fillet=1,
                        radius=chmf_r)
                self.shp = fcfun.shp_filletchamfer_dirpt(
                    self.shp,
                    self.axis_d,
                    fc_pt=self.get_pos_dwh(5, pt_w, 1),
                    fillet=1,
                    radius=chmf_r)
        else:
            for pt_w in (-5, 5):
                for pt_h in (0, 1):
                    self.shp = fcfun.shp_filletchamfer_dirpt(
                        self.shp,
                        self.axis_d,
                        fc_pt=self.get_pos_dwh(0, pt_w, pt_h),
                        fillet=1,
                        radius=chmf_r)
            for pt_w in (-3, 3):
                for pt_h in (1, 13):
                    self.shp = fcfun.shp_filletchamfer_dirpt(
                        self.shp,
                        self.axis_d,
                        fc_pt=self.get_pos_dwh(0, pt_w, pt_h),
                        fillet=1,
                        radius=chmf_r)

        fuse = []
        fuse.append(self.shp)
        shp_box_ref = fcfun.shp_box_dir(box_w=2 * self.bolthead_r,
                                        box_d=2 * self.bolthead_r,
                                        box_h=2 * self.bolthead_r,
                                        fc_axis_w=self.axis_w,
                                        fc_axis_h=self.axis_h,
                                        fc_axis_d=self.axis_d,
                                        cw=1,
                                        cd=0,
                                        ch=0,
                                        pos=self.get_pos_dwh(1, 0, 1))
        shp_box_ref = fcfun.shp_filletchamfer_dirpt(
            shp_box_ref,
            self.axis_w,
            fc_pt=self.get_pos_dwh(5, 0, 2),
            fillet=0,
            radius=2 * self.bolthead_r - TOL)
        fuse.append(shp_box_ref)
        shp_final = fcfun.fuseshplist(fuse)
        self.shp = shp_final

        # Then the Part
        super().create_fco(name)
        self.fco.Placement.Base = FreeCAD.Vector(0, 0, 0)
        self.fco.Placement.Base = self.position
Beispiel #2
0
    def __init__(
            self,
            filter_l=60.,
            filter_w=25.,
            filter_t=2.5,
            base_h=6.,
            hold_d=10.,
            filt_supp_in=2.,
            filt_rim=3.,
            filt_cen_d=0,
            fillet_r=1.,
            # linear guides SEBLV16 y SEBS15, y MGN12H:
            boltcol1_dist=20 / 2.,
            boltcol2_dist=12.5,  #thorlabs breadboard distance
            boltcol3_dist=25,
            boltrow1_h=0,
            boltrow1_2_dist=12.5,
            # linear guide MGN12H
            boltrow1_3_dist=20.,
            # linear guide SEBLV16 and SEBS15
            boltrow1_4_dist=25.,
            bolt_cen_mtr=4,
            bolt_linguide_mtr=3,  # linear guide bolts
            beltclamp_t=3.,  #2.8,
            beltclamp_l=12.,
            beltclamp_h=8.,
            clamp_post_dist=4.,
            sm_beltpost_r=1.,
            tol=kcomp.TOL,
            axis_d=VX,
            axis_w=VY,
            axis_h=VZ,
            pos_d=0,
            pos_w=0,
            pos_h=0,
            pos=V0):

        shp_clss.Obj3D.__init__(self, axis_d, axis_w, axis_h)

        # save the arguments as attributes:
        frame = inspect.currentframe()
        args, _, _, values = inspect.getargvalues(frame)
        for i in args:
            if not hasattr(self, i):
                setattr(self, i, values[i])

        # normal axes to print without support
        self.prnt_ax = self.axis_h

        # calculation of the dimensions:
        # hole for the filter, including tolerances:
        # Note that now the dimensions width and length are changed.
        # to depth and width
        # they are relative to the holder, not to the filter
        # no need to have the tolerances here:
        self.filt_hole_d = filter_w  # + tol # depth
        self.filt_hole_w = filter_l  # + tol # width in holder axis
        self.filt_hole_h = filter_t  # + tol/2. # 0.5 tolerance for height

        # The hole under the filter to let the light go through
        # and big enough to hold the filter
        # we could take filter_hole dimensions or filter dimensiones
        # just the tolerance difference
        self.filt_supp_d = self.filt_hole_d - 2 * filt_supp_in
        self.filt_supp_w = self.filt_hole_w - 2 * filt_supp_in

        # look for the largest bolt head in the first row:
        # dictionary of the center bolt and 2nd and 3rd column
        self.bolt_cen_dict = kcomp.D912[bolt_cen_mtr]
        self.bolt_cen_head_r_tol = self.bolt_cen_dict['head_r_tol']
        self.bolt_cen_r_tol = self.bolt_cen_dict['shank_r_tol']
        self.bolt_cen_head_l_tol = self.bolt_cen_dict['head_l_tol']

        # dictionary of the 1st column bolts (for the linear guide)
        self.bolt_linguide_dict = kcomp.D912[bolt_linguide_mtr]
        self.bolt_linguide_head_r_tol = self.bolt_linguide_dict['head_r_tol']
        self.bolt_linguide_r_tol = self.bolt_linguide_dict['shank_r_tol']
        self.bolt_linguide_head_l_tol = self.bolt_linguide_dict['head_l_tol']

        max_row1_head_r_tol = max(self.bolt_linguide_head_r_tol,
                                  self.bolt_cen_head_r_tol)

        if boltrow1_h == 0:
            self.boltrow1_h = 2 * max_row1_head_r_tol
        elif boltrow1_h < 2 * max_row1_head_r_tol:
            self.boltrow1_h = 2 * max_row1_head_r_tol
            msg1 = 'boltrow1_h smaller than bolt head diameter'
            msg2 = 'boltrow1_h will be bolt head diameter'
            logger.warning(msg1 + msg2 + str(self.boltrow1_h))
        # else # it will be as it is

        self.hold_h = (base_h + self.boltrow1_h + boltrow1_4_dist +
                       2 * self.bolt_linguide_head_r_tol)
        self.tot_h = self.hold_h + beltclamp_h

        self.beltclamp_blk_t = (hold_d - beltclamp_t) / 2.

        #self.clamp2cenpost = clamp_post_dist + s_beltclamp_r_sm

        # the large radius of the belt post
        self.lr_beltpost_r = (hold_d - 3) / 2.

        min_filt_cen_d = hold_d + filt_rim + filter_w / 2.
        if filt_cen_d == 0:
            filt_cen_d = hold_d + filt_rim + filter_w / 2.
        elif filt_cen_d < min_filt_cen_d:
            filt_cen_d = hold_d + filt_rim + filter_w / 2.
            msg = 'filt_cen_d is smaller than needed, taking: '
            logger.warning(msg + str(filt_cen_d))
        self.filt_cen_d = filt_cen_d

        self.tot_d = self.filt_cen_d + filter_w / 2. + filt_rim

        # find out if the max width if given by the filter or the holder
        base_w = filter_l + 2 * filt_rim
        hold_w = 2 * boltcol3_dist + 4 * self.bolt_cen_head_r_tol
        self.tot_w = max(base_w, hold_w)

        self.beltpost_l = (3 * self.lr_beltpost_r) + sm_beltpost_r
        self.clamp_lrbeltpostcen_dist = (self.beltpost_l - self.lr_beltpost_r +
                                         self.clamp_post_dist)

        self.d0_cen = 0
        self.w0_cen = 1  # symmetrical
        self.h0_cen = 0

        self.d_o[0] = V0
        self.d_o[1] = self.vec_d(self.beltclamp_blk_t)
        self.d_o[2] = self.vec_d(hold_d / 2.)
        self.d_o[3] = self.vec_d(hold_d - self.beltclamp_blk_t)
        # at the beginning of the bolt head hole for the central bolt
        self.d_o[4] = self.vec_d(hold_d - self.bolt_cen_head_l_tol)
        self.d_o[5] = self.vec_d(hold_d - self.bolt_linguide_head_l_tol)
        self.d_o[6] = self.vec_d(hold_d)
        # at the beginning of the hole of the porta (no tolerance):
        self.d_o[7] = self.vec_d(self.filt_cen_d - filter_w / 2.)
        # inner side of porta thruhole
        self.d_o[8] = self.d_o[7] + self.vec_d(filt_supp_in)
        # at the center of the porta:
        self.d_o[9] = self.vec_d(self.filt_cen_d)
        # outer side of porta thruhole
        self.d_o[10] = self.vec_d(self.filt_cen_d + filter_w / 2. -
                                  filt_supp_in)
        # at the end of the hole of the porta (no tolerance):
        self.d_o[11] = self.vec_d(self.filt_cen_d + filter_w / 2.)
        self.d_o[12] = self.vec_d(self.tot_d)

        # these are negative because actually the pos_w indicates a negative
        # position along axis_w

        self.w_o[0] = V0
        #1: at the first bolt column
        self.w_o[1] = self.vec_w(-boltcol1_dist)
        #2: at the second bolt column
        self.w_o[2] = self.vec_w(-boltcol2_dist)
        #3: at the third bolt column
        self.w_o[3] = self.vec_w(-boltcol3_dist)

        #7: at the end of the piece
        self.w_o[7] = self.vec_w(-self.tot_w / 2.)
        #6: at the inner side of the clamp rails
        # add belt_clamp because  w_o are negative
        self.w_o[6] = self.w_o[7] + self.vec_w(beltclamp_l)
        #5: at the outer side of the clamp post (smaller circle)
        self.w_o[5] = self.w_o[6] + self.vec_w(clamp_post_dist)
        #4: at the inner side of the clamp post (larger circle)
        self.w_o[4] = self.w_o[5] + self.vec_w(self.beltpost_l)

        #0: at the bottom (base)
        self.h_o[0] = V0
        #1: at the base for the porta
        self.h_o[1] = self.vec_h(base_h - self.filt_hole_h)
        #2: at the top of the base
        self.h_o[2] = self.vec_h(base_h)
        #3: first row of bolts
        self.h_o[3] = self.vec_h(base_h + self.boltrow1_h)
        #4: second row of bolts
        self.h_o[4] = self.h_o[3] + self.vec_h(boltrow1_2_dist)
        #5: third row of bolts, taking self.h_o[3]
        self.h_o[5] = self.h_o[3] + self.vec_h(boltrow1_3_dist)
        #6: 4th row of bolts
        self.h_o[6] = self.h_o[3] + self.vec_h(boltrow1_4_dist)
        #7: at the base of the belt clamp
        self.h_o[7] = self.vec_h(self.hold_h)
        #8: at the middle of the belt clamp
        self.h_o[8] = self.vec_h(self.hold_h + self.beltclamp_h / 2.)
        #9: at the top of the piece
        self.h_o[9] = self.vec_h(self.tot_h)

        # calculates the position of the origin, and keeps it in attribute pos_o
        self.set_pos_o()

        # -------- building of the piece
        # the base
        shp_base = fcfun.shp_box_dir(box_w=self.tot_w,
                                     box_d=self.tot_d,
                                     box_h=base_h,
                                     fc_axis_w=self.axis_w,
                                     fc_axis_d=self.axis_d,
                                     fc_axis_h=self.axis_h,
                                     cw=1,
                                     cd=0,
                                     ch=0,
                                     pos=self.pos_o)

        shp_base = fcfun.shp_filletchamfer_dir(shp_base,
                                               self.axis_h,
                                               fillet=1,
                                               radius=fillet_r)
        shp_base = shp_base.removeSplitter()

        # the holder to attach to a linear guide

        shp_holder = fcfun.shp_boxdir_fillchmfplane(
            box_w=self.tot_w,
            box_d=hold_d,
            box_h=self.hold_h,
            axis_d=self.axis_d,
            axis_h=self.axis_h,
            cw=1,
            cd=0,
            ch=0,
            fillet=1,
            radius=fillet_r,
            plane_fill=self.axis_d.negative(),
            both_planes=0,
            edge_dir=self.axis_h,
            pos=self.pos_o)

        #shp_holder = fcfun.shp_box_dir (box_w = self.tot_w,
        #box_d = hold_d,
        #box_h = self.hold_h,
        #fc_axis_w = self.axis_w,
        #fc_axis_d = self.axis_d,
        #fc_axis_h = self.axis_h,
        #cw = 1, cd = 0, ch = 1,
        #pos = self.pos_o)
        #shp_base = fcfun.shp_filletchamfer_dir (shp_base, self.axis_h,
        #fillet = 1, radius = fillet_r)
        shp_base = shp_base.removeSplitter()

        shp_l = shp_base.fuse(shp_holder)
        shp_l = shp_l.removeSplitter()
        # pos (6,0,2): position at the corner of the L
        shp_l = fcfun.shp_filletchamfer_dirpt(shp_l,
                                              fc_axis=self.axis_w,
                                              fc_pt=self.get_pos_dwh(6, 0, 2),
                                              fillet=0,
                                              radius=fillet_r)
        shp_l = shp_l.removeSplitter()
        # now we have the L shape with its chamfers and fillets

        # ------------------- Holes for the filter
        # include tolerances, along nh: only half of it, along h= 1 to make
        # the cut
        # pos (9,0,1) position at the center of the porta, at its bottom
        shp_filter_hole = fcfun.shp_box_dir_xtr(box_w=self.filt_hole_w,
                                                box_d=self.filt_hole_d,
                                                box_h=self.filt_hole_h,
                                                fc_axis_h=self.axis_h,
                                                fc_axis_d=self.axis_d,
                                                cw=1,
                                                cd=1,
                                                ch=0,
                                                xtr_h=1,
                                                xtr_nh=tol / 2.,
                                                xtr_d=tol,
                                                xtr_nd=tol,
                                                xtr_w=tol,
                                                xtr_nw=tol,
                                                pos=self.get_pos_dwh(9, 0, 1))
        # pos (9,0,0) position at the center of the porta, at the bottom of the
        # piece
        # no extra on top because it will be fused with shp_filter_hole
        shp_filter_thruhole = fcfun.shp_box_dir_xtr(box_w=self.filt_supp_w,
                                                    box_d=self.filt_supp_d,
                                                    box_h=base_h,
                                                    fc_axis_h=self.axis_h,
                                                    fc_axis_d=self.axis_d,
                                                    cw=1,
                                                    cd=1,
                                                    ch=0,
                                                    xtr_h=0,
                                                    xtr_nh=1,
                                                    xtr_d=tol,
                                                    xtr_nd=tol,
                                                    xtr_w=tol,
                                                    xtr_nw=tol,
                                                    pos=self.get_pos_dwh(
                                                        9, 0, 0))
        shp_fuse_filter_hole = shp_filter_hole.fuse(shp_filter_thruhole)
        shp_l = shp_l.cut(shp_fuse_filter_hole)
        shp_l = shp_l.removeSplitter()
        # the L with the hole in the base is done

        # ---------------- Holes for the bolts

        bolt_list = []

        shp_cen_bolt = fcfun.shp_bolt_dir(
            r_shank=self.bolt_cen_r_tol,
            l_bolt=hold_d,
            r_head=self.bolt_cen_head_r_tol,
            l_head=self.bolt_cen_head_l_tol,
            xtr_head=1,
            xtr_shank=1,
            support=0,  #not at printing directi
            fc_normal=self.axis_d.negative(),
            pos_n=2,
            pos=self.get_pos_dwh(0, 0, 3))
        bolt_list.append(shp_cen_bolt)
        # the rest of the bolts come in pairs:
        for w_side in [-1, 1]:
            # the wider bolts (although can be smaller)
            for cen_col, cen_row in zip([2, 3], [4, 3]):
                boltpos = self.get_pos_dwh(0, w_side * cen_col, cen_row)
                shp_cen_bolt = fcfun.shp_bolt_dir(
                    r_shank=self.bolt_cen_r_tol,
                    l_bolt=hold_d,
                    r_head=self.bolt_cen_head_r_tol,
                    l_head=self.bolt_cen_head_l_tol,
                    xtr_head=1,
                    xtr_shank=1,
                    support=0,  #not at printing directi
                    fc_normal=self.axis_d.negative(),
                    pos_n=2,
                    pos=boltpos)
                bolt_list.append(shp_cen_bolt)
            # the smaller bolts (although can be larger). Linear guide
            # first row:
            boltpos = self.get_pos_dwh(0, w_side * 1, 3)
            shp_lin_bolt = fcfun.shp_bolt_dir(
                r_shank=self.bolt_linguide_r_tol,
                l_bolt=hold_d,
                r_head=self.bolt_linguide_head_r_tol,
                l_head=self.bolt_linguide_head_l_tol,
                xtr_head=1,
                xtr_shank=1,
                support=0,  #not at printing directi
                fc_normal=self.axis_d.negative(),
                pos_n=2,
                pos=boltpos)
            bolt_list.append(shp_lin_bolt)
            # 3rd and 4th row. Just 2 shanks and a stadium per side
            for linrow in [5, 6]:
                boltpos = self.get_pos_dwh(0, w_side * 1, linrow)
                shp_lin_shank = fcfun.shp_cylcenxtr(
                    r=self.bolt_linguide_r_tol,
                    h=hold_d,
                    normal=self.axis_d,
                    ch=0,
                    xtr_top=0,  #no need: stadium
                    xtr_bot=1,
                    pos=boltpos)
                bolt_list.append(shp_lin_shank)
            # the stadium for both bolts head (they are too close)
            stadpos = self.get_pos_dwh(6, w_side * 1, 5)
            shp_stad = fcfun.shp_stadium_dir(
                length=boltrow1_4_dist - boltrow1_3_dist,
                radius=self.bolt_linguide_head_r_tol,
                height=self.bolt_linguide_head_l_tol,
                fc_axis_h=self.axis_d.negative(),
                fc_axis_l=self.axis_h,
                ref_l=2,
                ref_h=2,
                xtr_h=0,
                xtr_nh=1,
                pos=stadpos)
            bolt_list.append(shp_stad)

        shp_bolts = fcfun.fuseshplist(bolt_list)
        shp_l = shp_l.cut(shp_bolts)

        # ---------------- Belt clamps
        # at both sides
        clamp_list = []
        for w_side in [-1, 1]:
            clamp_pos = self.get_pos_dwh(0, w_side * 7, 7)
            if w_side == 1:
                clamp_axis_w = self.axis_w.negative()
            else:
                clamp_axis_w = self.axis_w
            shp_clamp = fcfun.shp_box_dir_xtr(box_w=beltclamp_l,
                                              box_d=self.beltclamp_blk_t,
                                              box_h=beltclamp_h,
                                              fc_axis_h=self.axis_h,
                                              fc_axis_d=self.axis_d,
                                              fc_axis_w=clamp_axis_w,
                                              cw=0,
                                              cd=0,
                                              ch=0,
                                              xtr_nh=1,
                                              pos=clamp_pos)

            # fillet the corner
            shp_clamp = fcfun.shp_filletchamfer_dirpt(shp_clamp,
                                                      self.axis_h,
                                                      fc_pt=clamp_pos,
                                                      fillet=1,
                                                      radius=fillet_r)
            shp_clamp = shp_clamp.removeSplitter()
            clamp_list.append(shp_clamp)

            # the other clamp, with no fillet
            clamp_pos = self.get_pos_dwh(6, w_side * 7, 7)
            shp_clamp = fcfun.shp_box_dir_xtr(box_w=beltclamp_l,
                                              box_d=self.beltclamp_blk_t,
                                              box_h=beltclamp_h,
                                              fc_axis_h=self.axis_h,
                                              fc_axis_d=self.axis_d.negative(),
                                              fc_axis_w=clamp_axis_w,
                                              cw=0,
                                              cd=0,
                                              ch=0,
                                              xtr_nh=1,
                                              pos=clamp_pos)
            clamp_list.append(shp_clamp)

            # the belt post
            beltpost_pos = self.get_pos_dwh(2, w_side * 5, 7)
            shp_beltpost = fcfun.shp_belt_dir(center_sep=2 *
                                              self.lr_beltpost_r,
                                              rad1=sm_beltpost_r,
                                              rad2=self.lr_beltpost_r,
                                              height=beltclamp_h,
                                              fc_axis_h=self.axis_h,
                                              fc_axis_l=clamp_axis_w,
                                              ref_l=3,
                                              ref_h=2,
                                              xtr_h=0,
                                              xtr_nh=1,
                                              pos=beltpost_pos)

            clamp_list.append(shp_beltpost)
        shp_filterholder = shp_l.multiFuse(clamp_list)
        shp_filterholder = shp_filterholder.removeSplitter()
        #Part.show (shp_filterholder)

        self.shp = shp_filterholder
    def __init__(self,
                 d_endstop,
                 rail_l = 15,
                 base_h = 5.,
                 h = 0,
                 holder_out = 2.,
                 #csunk = 1,
                 mbolt_d = 3.,
                 endstop_nut_dist = 0,
                 min_d = 0,
                 axis_d = VX,
                 axis_w = V0,
                 axis_h = VZ,
                 pos_d = 1,
                 pos_w = 1,
                 pos_h = 1,
                 pos = V0,
                 wfco = 1,
                 name = 'simple_enstop_holder'):

        self.pos = FreeCAD.Vector(0,0,0)
        self.position = pos

        self.wfco = wfco
        self.name = name
        self.base_h = base_h,

        # normalize the axis
        axis_h = DraftVecUtils.scaleTo(axis_h,1)
        axis_d = DraftVecUtils.scaleTo(axis_d,1)
        if axis_w == V0:
            axis_w = axis_h.cross(axis_d)
        else:
            axis_w = DraftVecUtils.scaleTo(axis_w,1)
        axis_h_n = axis_h.negative()
        axis_d_n = axis_d.negative()
        axis_w_n = axis_w.negative()    

        self.axis_h = axis_h
        self.axis_d = axis_d
        self.axis_w = axis_w

        self.d0_cen = 0
        self.w0_cen = 1 # centered
        self.h0_cen = 0

        self.pos_d = pos_d
        self.pos_w = pos_w
        self.pos_h = pos_h

        self.pos = pos

        Obj3D.__init__(self, axis_d, axis_w, axis_h, name)

        # best axis to print, to be pointing up:
        self.axis_print = axis_h

        self.d_endstop = d_endstop

        #                              :holder_out
        #      __:________:____________: :..................
        #     |   _________      |     |                   :
        #     |  (_________) ----| 0   |                   + tot_w
        #     |   _________  ----|     |-----> axis_d      :
        #     |  (_________) ----| 0   |                   :
        #     |__________________|_____|...................:
        #     :  :         : :   : :     :
        #     :  :..rail_l.: :   : :     :
        #     :  :         : :   :.:     :
        #     :bolthead_d  : :   : +estp_bolt_dist
        #                  : :   :       :
        #          bolthead_r:   :.......:
        #                    :      +estp_d
        #                    :           :
        #                    :.estp_tot_d:
        #     :...................._..:  :
        #         tot_d

        #      The width depend which side is larger
        #
        #                     ...... ______________________ ....
        #        mbolt_head_r ......|   ________     |     |    :
        #        mbolt_head_d ......|  (________) ---| 0   |    :
        #mbolt_head_d or more ......|   ________  ---|     |    + estp_w or more
        #        mbolt_head_d ......|  (________) ---| 0   |    :
        #        mbolt_head_r ......|________________|_____|....:


        #   it can have a second hole:
        #                             :  :estop_topbolt_dist
        #                                : holder_out
        #      __:________:______________: :..................
        #     |   _________      |       |                   :
        #     |  (_________) ----| 0  0  |                   + tot_w
        #     |   _________  ----|       |-----> axis_d      :
        #     |  (_________) ----| 0  0  |                   :
        #     |__________________|_______|...................:
        #     :  :     

        # mounting bolt data
        d_mbolt = kcomp.D912[int(mbolt_d)]  #dictionary of the mounting bolt
        #print(str(d_mbolt))
        mbolt_r_tol = d_mbolt['shank_r_tol']
        mbolt_head_r = d_mbolt['head_r']
        mbolt_head_r_tol = d_mbolt['head_r_tol']
        mbolt_head_l = d_mbolt['head_l']
        print (str(mbolt_head_l))
        # endstop data. change h->d, d->h, l->w
        estp_tot_d = d_endstop['HT']
        estp_d = d_endstop['H']
        estp_bolt_dist = d_endstop['BOLT_H']
        estp_bolt_sep = d_endstop['BOLT_SEP']
        estp_bolt_d = d_endstop['BOLT_D']  #diameter, not depth
        estp_w = d_endstop['L']

        # if there is a second bolt 
        if 'BOLT_TOP_H' in d_endstop:
           estop_2ndbolt_topdist = d_endstop['BOLT_TOP_H']
        else:
           estop_2ndbolt_topdist = 0

        # length of the pins:
        estp_pin_d  = estp_tot_d - estp_d
        if min_d == 0:
            tot_d = 3*mbolt_head_r + rail_l + estp_tot_d - holder_out
            # nut axis: (nut axis of the hexagon vertex
            hex_verx = axis_d
        else:
            # Taking the minimum lenght, very tight
            tot_d = (3*mbolt_head_r + rail_l + estp_d - holder_out
                     + estp_pin_d/2.)
            hex_verx = axis_w # less space

        # Total width is the largest value from:
        # - the width(length) of the endstop
        # - the rail width: 2 bolt head diameters, and 2 more: 1 diameter 
        #   between, and a radius to the end
        tot_w = max(estp_w, 8 * mbolt_head_r)
 
        if h== 0:
            tot_h = base_h + mbolt_head_l
        else:
            tot_h = base_h + mbolt_head_l
            if tot_h > h:
                logger.debug('h is smaller that it should, taking: ')
                logger.debug(str(tot_h))
            else:
                tot_h = h

        self.tot_h = tot_h
        self.tot_w = tot_w
        self.tot_d = tot_d

        if endstop_nut_dist == 0:
            endstop_nut_l =  kcomp.NUT_D934_L[estp_bolt_d]+TOL
        else:
            if endstop_nut_dist > tot_h -  kcomp.NUT_D934_L[estp_bolt_d]+TOL:
                logger.debug('endstop_nut_dist: ' + str(endstop_nut_dist)
                             + ' larger than total height - (nut length+tol): '
                             + str(tot_h) + ' - '
                             + str( kcomp.NUT_D934_L[estp_bolt_d] + TOL))
                endstop_nut_l =  kcomp.NUT_D934_L[estp_bolt_d]+TOL
            else:
                endstop_nut_l = tot_h - endstop_nut_dist
            
        # ------------ DISTANCES ON AXIS_D
        # ref_d points:          fc_axis_h
                               
        #  1___2______3_______4__.5.............     ref_h = 2
        #  | :..........:    : : |:.....       + h
        #  |__:________:_____:_:_|:.....base_h.:     ref_h = 1

        # the end it is not on the holder because of -holder_out
        # distance from 1 to 2 in axis_d
        
        # vectors from the origin to the points along axis_d:
        self.d_o[0] = V0
        self.d_o[1] = self.vec_d(2* mbolt_head_r)
        self.d_o[2] = self.vec_d(2* mbolt_head_r + rail_l)
        self.d_o[3] = self.vec_d((tot_d + holder_out) - (estp_d - estp_bolt_dist))
        self.d_o[4] = self.vec_d(tot_d + holder_out)
        if estop_2ndbolt_topdist > 0 :
            self.d_o[5] = self.vec_d(tot_d + holder_out - estop_2ndbolt_topdist)
        else:
            self.d_o[5] = self.d_o[3]

        # vectors from the origin to the points along axis_w:
        self.w_o[0] = V0
        self.w_o[1] = self.vec_w(estp_bolt_sep/2.)
        self.w_o[2] = self.vec_w(tot_w/2. - 2* mbolt_head_r)
        self.w_o[3] = self.vec_w(tot_w/2.)

        # vectors from the origin to the points along axis_h:
        self.h_o[0] = V0
        self.h_o[1] = self.vec_h(tot_h)

        # calculates the position of the origin, and keeps it in attribute pos_o
        self.set_pos_o()

        # TODO: clear this parts when points d_o, w_o, h_o
        dis_1_2_d = 2* mbolt_head_r # d_o[1]
        dis_1_3_d = dis_1_2_d + rail_l # d_o[2]
        #dis_2_3_d = rail_l
        dis_1_5_d = tot_d + holder_out # d_o[4]
        dis_1_4_d = dis_1_5_d - (estp_d - estp_bolt_dist) # d_o[3]
        # distances to the new point, that is the second bolt hole, if exists
        if estop_2ndbolt_topdist > 0 :
            dis_1_6_d = dis_1_5_d - estop_2ndbolt_topdist
        else:
            # same as 4: (to avoid errors) it will be the same hole
            dis_1_6_d = dis_1_4_d

        fc_1_2_d = self.d_o[1]
        fc_1_3_d = self.d_o[2]
        fc_1_4_d = self.d_o[3]
        fc_1_5_d = self.d_o[4]
        fc_1_6_d = self.d_o[5]
        # vector from the reference point to point 1 on axis_d
        if pos_d == 0: 
            refto_1_d = V0
        elif pos_d == 1:
            refto_1_d = fc_1_2_d.negative()
        elif pos_d == 2:
            refto_1_d = fc_1_3_d.negative()
        elif pos_d == 3:
            refto_1_d = fc_1_4_d.negative()
        elif pos_d == 4:
            refto_1_d = fc_1_5_d.negative()
        elif pos_d == 5:
            refto_1_d = fc_1_6_d.negative()
        else:
            logger.error('wrong reference point')

        # ------------ DISTANCES ON AXIS_W
        # ref_w points
        #                      fc_axis_w
        #  _____________________ :
        # |   ________     |    |:
        # |  (________) ---| 0  |:
        # 1   ________  ---|    |:-----> fc_axis_d.
        # 3  (________) ---| 2  |:
        # 4________________|____|:

        # distance from 1 to 2 on axis_w
        dis_1_2_w = estp_bolt_sep/2.
        dis_1_4_w = tot_w/2.
        dis_1_3_w = dis_1_4_w - 2* mbolt_head_r

        fc_1_2_w = self.w_o[1]
        fc_1_3_w = self.w_o[2]
        fc_1_4_w = self.w_o[3]
        # vector from the reference point to point 1 on axis_w
        if pos_w == 0: 
            refto_1_w = V0
        elif pos_w == 1:
            refto_1_w = fc_1_2_w.negative()
        elif pos_w == 2:
            refto_1_w = fc_1_3_w.negative()
        elif pos_w == 3:
            refto_1_w = fc_1_4_w.negative()
        else:
            logger.error('wrong reference point')

        # ------------ DISTANCES ON AXIS_H
        fc_1_2_h = DraftVecUtils.scale(axis_h, tot_h)
        fc_2_1_h = fc_1_2_h.negative()
        if pos_h == 0: 
            refto_2_h = self.h_o[1]
        elif pos_h == 1:
            refto_2_h = V0
        else:
            logger.error('wrong reference point')


        # Situation of the point on d=1, s=1, h=2
        #       ____________
        #      /
        #     * d1_w1_h2
        #    /____________
        #    |
        #
        # this is an absolute position
        # super().get_pos_dwh(pos_d,pos_w,pos_h)
        d1_w1_h2_pos = self.pos + refto_1_d + refto_1_w + refto_2_h
        d1_w1_h1_pos = d1_w1_h2_pos + fc_2_1_h


        # draw the box from this point d1 s1 h2
        shp_box = fcfun.shp_box_dir(box_w = tot_w,
                                    box_d = tot_d,
                                    box_h = tot_h,
                                    fc_axis_h = axis_h_n,
                                    fc_axis_d = axis_d,
                                    cw = 1, cd = 0, ch = 0,
                                    pos = d1_w1_h2_pos)

        shp_box = fcfun.shp_filletchamfer_dir(shp_box, fc_axis = axis_h,
                                              fillet=1,
                                              radius = 2)

        holes = []
        # holes for the endstop bolts, point: d4 w2 h1
        for fc_1_2_wi in [fc_1_2_w, fc_1_2_w.negative()]:
            pos_estpbolt = d1_w1_h1_pos + fc_1_4_d + fc_1_2_wi
            # hole with the nut hole
            shp_estpbolt = fcfun.shp_bolt_dir (
                             r_shank= (estp_bolt_d+TOL)/2.,
                             l_bolt = tot_h,
                           # 1 TOL didnt fit
                           r_head = (kcomp.NUT_D934_D[estp_bolt_d]+2*TOL)/2.,
                             l_head = endstop_nut_l,
                             hex_head = 1,
                             xtr_head = 1, xtr_shank = 1,
                             fc_normal = axis_h,
                             fc_verx1 = hex_verx,
                             pos = pos_estpbolt)
            holes.append(shp_estpbolt)
            # it can have a second hole
            if estop_2ndbolt_topdist >0:
                pos_estp_top_bolt =  d1_w1_h1_pos + fc_1_6_d + fc_1_2_wi
                # hole with the nut hole
                shp_estpbolt = fcfun.shp_bolt_dir (
                             r_shank= (estp_bolt_d+TOL)/2.,
                             l_bolt = tot_h,
                           # 1 TOL didnt fit
                           r_head = (kcomp.NUT_D934_D[estp_bolt_d]+2*TOL)/2.,
                             l_head = endstop_nut_l,
                             hex_head = 1,
                             xtr_head = 1, xtr_shank = 1,
                             fc_normal = axis_h,
                             fc_verx1 = hex_verx,
                             pos = pos_estp_top_bolt)
                holes.append(shp_estpbolt)



        # holes for the rails, point d2 w3 h2
        for fc_1_3_wi in [fc_1_3_w, fc_1_3_w.negative()]:
            #hole for the rails, use the function stadium
            rail_pos = d1_w1_h2_pos + fc_1_2_d + fc_1_3_wi
            shp_rail_sunk = fcfun.shp_stadium_dir (
                                  length = rail_l,
                                  radius = mbolt_head_r_tol,
                                  height = mbolt_head_l,
                                  fc_axis_l = axis_d,
                                  fc_axis_h = axis_h_n,
                                  ref_l = 2, #at the center of semicircle
                                  ref_s = 1, # symmetrical on the short side
                                  ref_h = 2,
                                  xtr_h = 0,
                                  xtr_nh = 1,
                                  pos = rail_pos)
            shp_rail = fcfun.shp_stadium_dir (
                                  length = rail_l,
                                  radius = mbolt_r_tol,
                                  height = tot_h,
                                  fc_axis_l = axis_d,
                                  fc_axis_h = axis_h_n,
                                  ref_l = 2,
                                  ref_s = 1,
                                  ref_h = 2,
                                  xtr_h = 1,
                                  xtr_nh = 0,
                                  pos = rail_pos)

                                  
                                  
            holes.append(shp_rail)
            holes.append(shp_rail_sunk)

        shp_holes = fcfun.fuseshplist(holes)
        shp_holder = shp_box.cut(shp_holes)
           
        self.shp = shp_holder

        if wfco == 1:
            super().create_fco()
            # Need to set first in (0,0,0) and after that set the real placement.
            # This enable to do rotations without any issue
            self.fco.Placement.Base = FreeCAD.Vector(0,0,0) 
            self.fco.Placement.Base = self.position