def logistic_warp(alpha,
                  nu,
                  q,
                  y,
                  deltaO=.1,
                  deltag=.05,
                  max_itr=8000,
                  tol=1e-4,
                  display=0,
                  method=1):
    """
    calculates optimal warping for function logistic regression

    :param alpha: scalar
    :param nu: numpy ndarray of shape (M,N) of M functions with N samples
    :param q: numpy ndarray of shape (M,N) of M functions with N samples
    :param y: numpy ndarray of shape (1,N) of M functions with N samples
    responses

    :rtype: numpy array
    :return gamma: warping function

    """
    if method == 1:
        tau = 0
        # q, scale = cf.scale_curve(q)
        q = q / norm(q)
        # nu, scale = cf.scale_curve(nu)
        # alpha = alpha/scale

        gam_old, O_old = lw.oclogit_warp(
            np.ascontiguousarray(alpha), np.ascontiguousarray(nu),
            np.ascontiguousarray(q), np.ascontiguousarray(y, dtype=np.int32),
            max_itr, tol, deltaO, deltag, display)
    elif method == 2:
        betanu = cf.q_to_curve(nu)
        beta = cf.q_to_curve(q)
        T = beta.shape[1]
        if y == 1:
            beta1, O_old, tau = cf.find_rotation_and_seed_coord(betanu, beta)
            q = cf.curve_to_q(beta1)[0]
            gam_old = cf.optimum_reparam_curve(nu, q)
        elif y == -1:
            beta1, O_old, tau = cf.find_rotation_and_seed_coord(
                -1 * betanu, beta)
            q = cf.curve_to_q(beta1)[0]
            gam_old = cf.optimum_reparam_curve(-1 * nu, q)

    return (gam_old, O_old, tau)
Beispiel #2
0
def init_path_geod(beta1, beta2, T=100, k=5):
    r"""
    Initializes a path in :math:`\cal{C}`. beta1, beta2 are already
    standardized curves. Creates a path from beta1 to beta2 in
    shape space, then projects to the closed shape manifold.

    :param beta1: numpy ndarray of shape (2,M) of M samples (first curve)
    :param beta2: numpy ndarray of shape (2,M) of M samples (end curve)
    :param T: Number of samples of curve (Default = 100)
    :param k: number of samples along path (Default = 5)

    :rtype: numpy ndarray
    :return alpha: a path between two q-functions
    :return beta:  a path between two curves
    :return O: rotation matrix

    """
    alpha = zeros((2, T, k))
    beta = zeros((2, T, k))

    dist, pathq, O = geod_sphere(beta1, beta2, k)

    for tau in range(0, k):
        alpha[:, :, tau] = cf.project_curve(pathq[:, :, tau])
        x = cf.q_to_curve(alpha[:, :, tau])
        a = -1*cf.calculatecentroid(x)
        beta[:, :, tau] = x + tile(a, [T, 1]).T

    return(alpha, beta, O)
Beispiel #3
0
def init_path_geod(beta1, beta2, T=100, k=5):
    """
    Initializes a path in \cal{C}. beta1, beta2 are already
    standardized curves. Creates a path from beta1 to beta2 in
    shape space, then projects to the closed shape manifold.

    :param beta1: numpy ndarray of shape (2,M) of M samples (first curve)
    :param beta2: numpy ndarray of shape (2,M) of M samples (end curve)
    :param T: Number of samples of curve (Default = 100)
    :param k: number of samples along path (Default = 5)

    :rtype: numpy ndarray
    :return alpha: a path between two q-functions
    :return beta:  a path between two curves
    :return O: rotation matrix

    """
    alpha = zeros((2, T, k))
    beta = zeros((2, T, k))

    dist, pathq, O = geod_sphere(beta1, beta2, k)

    for tau in range(0, k):
        alpha[:, :, tau] = cf.project_curve(pathq[:, :, tau])
        x = cf.q_to_curve(alpha[:, :, tau])
        a = -1 * cf.calculatecentroid(x)
        beta[:, :, tau] = x + tile(a, [T, 1]).T

    return (alpha, beta, O)
Beispiel #4
0
    def plot_pca(self):

        if not hasattr(self, 's'):
            raise NameError('Calculate PCA')

        fig, ax = plt.subplots()
        ax.plot(self.s)
        plt.title('Singular Values')

        # plot principal modes of variability
        VM = mean(self.v, 2)
        VM = VM.flatten()
        for j in range(0, 4):
            fig, ax = plt.subplots()
            for i in range(1, 11):
                tmp = VM + 0.5 * (i - 5) * sqrt(self.s[j]) * self.U[:, j]
                m, n = self.q_mean.shape
                v1 = tmp.reshape(m, n)
                q2n = cf.elastic_shooting(self.q_mean, v1)

                p = cf.q_to_curve(q2n)
                if i == 5:
                    ax.plot(0.2 * i + p[0, :], p[1, :], 'k', linewidth=2)
                else:
                    ax.plot(0.2 * i + p[0, :], p[1, :], linewidth=2)

            ax.set_aspect('equal')
            plt.axis('off')
            plt.title('PD %d' % (j + 1))

        plt.show()
def sample_shapes(mu, K, mode='O', no=3, numSamp=10):
    """
    Computes sample shapes from mean and covariance

    :param betamean: numpy ndarray of shape (n, M) describing the mean curve
    :param mu: numpy ndarray of shape (n, M) describing the mean srvf
    :param K: numpy ndarray of shape (M, M) describing the covariance
    :param mode: Open ('O') or closed curve ('C') (default 'O')
    :param no: number of direction (default 3)
    :param numSamp: number of samples (default 10)

    :rtype: tuple of numpy array
    :return samples: sample shapes

    """
    n, T = mu.shape
    modes = ['O', 'C']
    mode = [i for i, x in enumerate(modes) if x == mode]
    if len(mode) == 0:
        mode = 0
    else:
        mode = mode[0]

    U, s, V = svd(K)

    if mode == 0:
        N = 2
    else:
        N = 10

    epsilon = 1./(N-1)

    samples = empty(numSamp, dtype=object)
    for i in range(0, numSamp):
        v = zeros((2, T))
        for m in range(0, no):
            v = v + randn()*sqrt(s[m])*vstack((U[0:T, m], U[T:2*T, m]))

        q1 = mu
        for j in range(0, N-1):
            normv = sqrt(cf.innerprod_q2(v, v))

            if normv < 1e-4:
                q2 = mu
            else:
                q2 = cos(epsilon*normv)*q1+sin(epsilon*normv)*v/normv
                if mode == 1:
                    q2 = cf.project_curve(q2)

            # Parallel translate tangent vector
            basis2 = cf.find_basis_normal(q2)
            v = cf.parallel_translate(v, q1, q2, basis2, mode)

            q1 = q2

        samples[i] = cf.q_to_curve(q2)

    return(samples)
Beispiel #6
0
def sample_shapes(mu, K, mode='O', no=3, numSamp=10):
    """
    Computes sample shapes from mean and covariance

    :param betamean: numpy ndarray of shape (n, M) describing the mean curve
    :param mu: numpy ndarray of shape (n, M) describing the mean srvf
    :param K: numpy ndarray of shape (M, M) describing the covariance
    :param mode: Open ('O') or closed curve ('C') (default 'O')
    :param no: number of direction (default 3)
    :param numSamp: number of samples (default 10)

    :rtype: tuple of numpy array
    :return samples: sample shapes

    """
    n, T = mu.shape
    modes = ['O', 'C']
    mode = [i for i, x in enumerate(modes) if x == mode]
    if len(mode) == 0:
        mode = 0
    else:
        mode = mode[0]

    U, s, V = svd(K)

    if mode == 0:
        N = 2
    else:
        N = 10

    epsilon = 1./(N-1)

    samples = empty(numSamp, dtype=object)
    for i in range(0, numSamp):
        v = zeros((2, T))
        for m in range(0, no):
            v = v + randn()*sqrt(s[m])*vstack((U[0:T, m], U[T:2*T, m]))

        q1 = mu
        for j in range(0, N-1):
            normv = sqrt(cf.innerprod_q2(v, v))

            if normv < 1e-4:
                q2 = mu
            else:
                q2 = cos(epsilon*normv)*q1+sin(epsilon*normv)*v/normv
                if mode == 1:
                    q2 = cf.project_curve(q2)

            # Parallel translate tangent vector
            basis2 = cf.find_basis_normal(q2)
            v = cf.parallel_translate(v, q1, q2, basis2, mode)

            q1 = q2

        samples[i] = cf.q_to_curve(q2)

    return(samples)
Beispiel #7
0
    def shape_pca(self, no=10):
        """
        Computes principal direction of variation specified by no. N is
        Number of shapes away from mean. Creates 2*N+1 shape sequence

        :param no: number of direction (default 3)
        """
        if not hasattr(self, 'C'):
            self.karcher_cov()

        U1, s, V = svd(self.C)
        self.U = U1[:, 0:no]
        self.s = s[0:no]

        # express shapes as coefficients
        K = self.beta.shape[2]
        VM = mean(self.v, 2)
        VM = VM.flatten()
        if (self.scale):
            VM = append(VM, self.mean_scale)

        x = zeros((no, K))
        for ii in range(0, K):
            tmpv = self.v[:, :, ii]
            tmpv1 = tmpv.flatten()
            if (self.scale):
                tmpv1 = append(tmpv1, self.len[ii])
            Utmp = self.U.T
            x[:, ii] = Utmp.dot((tmpv1 - VM))

        self.coef = x

        modes = ['O', 'C']
        mode = [i for i, x in enumerate(modes) if x == self.mode]
        if len(mode) == 0:
            mode = 0
        else:
            mode = mode[0]

        n1, T, N1 = self.beta.shape
        p = zeros((n1, T, no, 10))
        for j in range(0, no):
            for i in range(1, 11):
                tmp = VM + 0.5 * (i - 5) * sqrt(self.s[j]) * self.U[:, j]
                m, n = self.q_mean.shape
                if (self.scale):
                    tmp_scale = tmp[-1]
                    tmp = tmp[0:-1]
                else:
                    tmp_scale = 1
                v1 = tmp.reshape(m, n)
                q2n = cf.elastic_shooting(self.q_mean, v1, mode)

                p[:, :, j, i - 1] = cf.q_to_curve(q2n, tmp_scale)

        self.pca = p

        return
Beispiel #8
0
def logistic_warp(alpha, nu, q, y, deltaO=.1, deltag=.05, max_itr=8000,
                  tol=1e-4, display=0, method=1):
    """
    calculates optimal warping for function logistic regression

    :param alpha: scalar
    :param nu: numpy ndarray of shape (M,N) of M functions with N samples
    :param q: numpy ndarray of shape (M,N) of M functions with N samples
    :param y: numpy ndarray of shape (1,N) of M functions with N samples
    responses

    :rtype: numpy array
    :return gamma: warping function

    """
    if method == 1:
        tau = 0
        # q, scale = cf.scale_curve(q)
        q = q/norm(q)
        # nu, scale = cf.scale_curve(nu)
        # alpha = alpha/scale

        gam_old, O_old = lw.oclogit_warp(np.ascontiguousarray(alpha),
                                         np.ascontiguousarray(nu),
                                         np.ascontiguousarray(q),
                                         np.ascontiguousarray(y, dtype=np.int32),
                                         max_itr, tol, deltaO, deltag, display)
    elif method == 2:
        betanu = cf.q_to_curve(nu)
        beta = cf.q_to_curve(q)
        T = beta.shape[1]
        if y == 1:
            beta1, O_old, tau = cf.find_rotation_and_seed_coord(betanu, beta)
            q = cf.curve_to_q(beta1)
            gam_old = cf.optimum_reparam_curve(nu, q)
        elif y == -1:
            beta1, O_old, tau = cf.find_rotation_and_seed_coord(-1 * betanu, beta)
            q = cf.curve_to_q(beta1)
            gam_old = cf.optimum_reparam_curve(-1 * nu, q)


    return (gam_old, O_old, tau)
Beispiel #9
0
    def sample_shapes(self, no=3, numSamp=10):
        """
        Computes sample shapes from mean and covariance

        :param no: number of direction (default 3)
        :param numSamp: number of samples (default 10)
        """
        n, T = self.q_mean.shape
        modes = ['O', 'C']
        mode = [i for i, x in enumerate(modes) if x == self.mode]
        if len(mode) == 0:
            mode = 0
        else:
            mode = mode[0]

        U, s, V = svd(self.C)

        if mode == 0:
            N = 2
        else:
            N = 10

        epsilon = 1. / (N - 1)

        samples = empty(numSamp, dtype=object)
        for i in range(0, numSamp):
            v = zeros((2, T))
            for m in range(0, no):
                v = v + randn() * sqrt(s[m]) * vstack(
                    (U[0:T, m], U[T:2 * T, m]))

            q1 = self.q_mean
            for j in range(0, N - 1):
                normv = sqrt(cf.innerprod_q2(v, v))

                if normv < 1e-4:
                    q2 = self.q_mean
                else:
                    q2 = cos(epsilon * normv) * q1 + sin(
                        epsilon * normv) * v / normv
                    if mode == 1:
                        q2 = cf.project_curve(q2)

                # Parallel translate tangent vector
                basis2 = cf.find_basis_normal(q2)
                v = cf.parallel_translate(v, q1, q2, basis2, mode)

                q1 = q2

            samples[i] = cf.q_to_curve(q2)

        self.samples = samples
        return
Beispiel #10
0
    def plot_pca(self):

        if not hasattr(self, 's'):
            raise NameError('Calculate PCA')

        fig, ax = plt.subplots()
        ax.plot(cumsum(self.s) / sum(self.s) * 100)
        plt.title('Variability Explained')
        plt.xlabel('PC')

        # plot principal modes of variability
        VM = mean(self.v, 2)
        VM = VM.flatten()
        if (self.scale):
            VM = append(VM, self.mean_scale)

        modes = ['O', 'C']
        mode = [i for i, x in enumerate(modes) if x == self.mode]
        if len(mode) == 0:
            mode = 0
        else:
            mode = mode[0]

        for j in range(0, 4):
            fig, ax = plt.subplots()
            for i in range(1, 11):
                tmp = VM + 0.5 * (i - 5) * sqrt(self.s[j]) * self.U[:, j]
                m, n = self.q_mean.shape
                if (self.scale):
                    tmp_scale = tmp[-1]
                    tmp = tmp[0:-1]
                else:
                    tmp_scale = 1
                v1 = tmp.reshape(m, n)
                q2n = cf.elastic_shooting(self.q_mean, v1, mode)

                p = cf.q_to_curve(q2n, tmp_scale)

                mv = 0.2
                if (self.scale):
                    mv *= self.mean_scale

                if i == 5:
                    ax.plot(mv * i + p[0, :], p[1, :], 'k', linewidth=2)
                else:
                    ax.plot(mv * i + p[0, :], p[1, :], linewidth=2)

            ax.set_aspect('equal')
            plt.axis('off')
            plt.title('PD %d' % (j + 1))

        plt.show()
def regression_warp(nu, beta, y, alpha):
    """
    calculates optimal warping for function linear regression

    :param nu: numpy ndarray of shape (M,N) of M functions with N samples
    :param beta: numpy ndarray of shape (M,N) of M functions with N samples
    :param y: numpy ndarray of shape (1,N) of M functions with N samples
    responses
    :param alpha: numpy scalar

    :rtype: numpy array
    :return gamma_new: warping function

    """
    T = beta.shape[1]
    betanu = cf.q_to_curve(nu)

    betaM, O_M, tauM = cf.find_rotation_and_seed_coord(betanu, beta)
    q = cf.curve_to_q(betaM)
    gam_M = cf.optimum_reparam_curve(nu, q)
    betaM = cf.group_action_by_gamma_coord(betaM, gam_M)
    qM = cf.curve_to_q(betaM)
    y_M = cf.innerprod_q2(qM, nu)

    betam, O_m, taum = cf.find_rotation_and_seed_coord(-1 * betanu, beta)
    q = cf.curve_to_q(betam)
    gam_m = cf.optimum_reparam_curve(-1 * nu, q)
    betam = cf.group_action_by_gamma_coord(betam, gam_m)
    qm = cf.curve_to_q(betam)
    y_m = cf.innerprod_q2(qm, nu)

    if y > alpha + y_M:
        O_hat = O_M
        gamma_new = gam_M
        tau = tauM
    elif y < alpha + y_m:
        O_hat = O_m
        gamma_new = gam_m
        tau = taum
    else:
        gamma_new, O_hat, tau = cf.curve_zero_crossing(y - alpha, beta, nu, y_M, y_m, gam_M,
                                                               gam_m)

    return(gamma_new, O_hat, tau)
Beispiel #12
0
def update_path(alpha, beta, gradE, delta, T=100, k=5):
    """
    Update the path along the direction -gradE

    :param alpha: numpy ndarray of shape (2,M) of M samples
    :param beta: numpy ndarray of shape (2,M) of M samples
    :param gradE: numpy ndarray of shape (2,M) of M samples
    :param delta: gradient paramenter
    :param T: Number of samples of curve (Default = 100)
    :param k: number of samples along path (Default = 5)

    :rtype: numpy scalar
    :return alpha: updated path of srvfs
    :return beta: updated path of curves

    """
    for tau in range(1, k - 1):
        alpha_new = alpha[:, :, tau] - delta * gradE[:, :, tau]
        alpha[:, :, tau] = cf.project_curve(alpha_new)
        x = cf.q_to_curve(alpha[:, :, tau])
        a = -1 * cf.calculatecentroid(x)
        beta[:, :, tau] = x + tile(a, [T, 1]).T

    return (alpha, beta)
Beispiel #13
0
def update_path(alpha, beta, gradE, delta, T=100, k=5):
    """
    Update the path along the direction -gradE

    :param alpha: numpy ndarray of shape (2,M) of M samples
    :param beta: numpy ndarray of shape (2,M) of M samples
    :param gradE: numpy ndarray of shape (2,M) of M samples
    :param delta: gradient paramenter
    :param T: Number of samples of curve (Default = 100)
    :param k: number of samples along path (Default = 5)

    :rtype: numpy scalar
    :return alpha: updated path of srvfs
    :return beta: updated path of curves

    """
    for tau in range(1, k-1):
        alpha_new = alpha[:, :, tau] - delta*gradE[:, :, tau]
        alpha[:, :, tau] = cf.project_curve(alpha_new)
        x = cf.q_to_curve(alpha[:, :, tau])
        a = -1*cf.calculatecentroid(x)
        beta[:, :, tau] = x + tile(a, [T, 1]).T

    return(alpha, beta)
Beispiel #14
0
    def karcher_mean(self, parallel=False, cores=-1):
        """
        This calculates the mean of a set of curves
        :param parallel: run in parallel (default = F)
        :param cores: number of cores for parallel (default = -1 (all))
        """
        n, T, N = self.beta.shape

        modes = ['O', 'C']
        mode = [i for i, x in enumerate(modes) if x == self.mode]
        if len(mode) == 0:
            mode = 0
        else:
            mode = mode[0]

        # Initialize mu as one of the shapes
        mu = self.q[:, :, 0]
        betamean = self.beta[:, :, 0]
        itr = 0

        gamma = zeros((T, N))
        maxit = 20

        sumd = zeros(maxit + 1)
        v = zeros((n, T, N))
        normvbar = zeros(maxit + 1)

        delta = 0.5
        tolv = 1e-4
        told = 5 * 1e-3

        print("Computing Karcher Mean of %d curves in SRVF space.." % N)
        while itr < maxit:
            print("updating step: %d" % (itr + 1))

            if iter == maxit:
                print("maximal number of iterations reached")

            mu = mu / sqrt(cf.innerprod_q2(mu, mu))
            if mode == 1:
                self.basis = cf.find_basis_normal(mu)
            else:
                self.basis = []

            sumv = zeros((n, T))
            sumd[0] = inf
            sumd[itr + 1] = 0
            out = Parallel(n_jobs=cores)(delayed(karcher_calc)(
                self.beta[:, :, n], self.q[:, :,
                                           n], betamean, mu, self.basis, mode)
                                         for n in range(N))
            v = zeros((n, T, N))
            for i in range(0, N):
                v[:, :, i] = out[i][0]
                sumd[itr + 1] = sumd[itr + 1] + out[i][1]**2

            sumv = v.sum(axis=2)

            # Compute average direction of tangent vectors v_i
            vbar = sumv / float(N)

            normvbar[itr] = sqrt(cf.innerprod_q2(vbar, vbar))
            normv = normvbar[itr]

            if normv > tolv and fabs(sumd[itr + 1] - sumd[itr]) > told:
                # Update mu in direction of vbar
                mu = cos(delta * normvbar[itr]) * mu + sin(
                    delta * normvbar[itr]) * vbar / normvbar[itr]

                if mode == 1:
                    mu = cf.project_curve(mu)

                x = cf.q_to_curve(mu)
                a = -1 * cf.calculatecentroid(x)
                betamean = x + tile(a, [T, 1]).T
            else:
                break

            itr += 1

        self.q_mean = mu
        self.beta_mean = betamean
        self.v = v
        self.qun = sumd[0:(itr + 1)]
        self.E = normvbar[0:(itr + 1)]

        return
Beispiel #15
0
def geod_sphere(beta1, beta2, k=5):
    """
    This function caluclates the geodecis between open curves beta1 and
    beta2 with k steps along path

    :param beta1: numpy ndarray of shape (2,M) of M samples
    :param beta2: numpy ndarray of shape (2,M) of M samples
    :param k: number of samples along path (Default = 5)

    :rtype: numpy ndarray
    :return dist: geodesic distance
    :return path: geodesic path
    :return O: rotation matrix

    """
    lam = 0.0
    elastic = 1
    rotation = 1
    returnpath = 1
    n, T = beta1.shape

    beta1 = cf.resamplecurve(beta1, T)
    beta2 = cf.resamplecurve(beta2, T)

    centroid1 = cf.calculatecentroid(beta1)
    beta1 = beta1 - tile(centroid1, [T, 1]).T
    centroid2 = cf.calculatecentroid(beta2)
    beta2 = beta2 - tile(centroid2, [T, 1]).T

    q1 = cf.curve_to_q(beta1)
    if rotation:
        beta2, O1, tau = cf.find_rotation_and_seed_coord(beta1, beta2)
        q2 = cf.curve_to_q(beta2)
    else:
        O1 = eye(2)
        q2 = cf.curve_to_q(beta2)

    if elastic:
        # Find the optimal coorespondence
        gam = cf.optimum_reparam_curve(q2, q1, lam)
        gamI = uf.invertGamma(gam)
        # Applying optimal re-parameterization to the second curve
        beta2n = cf.group_action_by_gamma_coord(beta2, gamI)
        q2n = cf.curve_to_q(beta2n)

        if rotation:
            beta2n, O2, tau = cf.find_rotation_and_seed_coord(beta1, beta2n)
            centroid2 = cf.calculatecentroid(beta2n)
            beta2n = beta2n - tile(centroid2, [T, 1]).T
            q2n = cf.curve_to_q(beta2n)
            O = O1.dot(O2)
    else:
        q2n = q2
        O = O1

    # Forming geodesic between the registered curves
    dist = arccos(cf.innerprod_q2(q1, q2n))

    if returnpath:
        PsiQ = zeros((n, T, k))
        PsiX = zeros((n, T, k))
        for tau in range(0, k):
            s = dist * tau / (k - 1.0)
            PsiQ[:, :, tau] = (sin(dist - s) * q1 + sin(s) * q2n) / sin(dist)
            PsiX[:, :, tau] = cf.q_to_curve(PsiQ[:, :, tau])

        path = PsiQ
    else:
        path = 0

    return (dist, path, O)
Beispiel #16
0
def curve_principal_directions(betamean, mu, K, mode='O', no=3, N=5):
    """
    Computes principal direction of variation specified by no. N is
    Number of shapes away from mean. Creates 2*N+1 shape sequence

    :param betamean: numpy ndarray of shape (n, M) describing the mean curve
    :param mu: numpy ndarray of shape (n, M) describing the mean srvf
    :param K: numpy ndarray of shape (M, M) describing the covariance
    :param mode: Open ('O') or closed curve ('C') (default 'O')
    :param no: number of direction (default 3)
    :param N: number of shapes (2*N+1) (default 5)

    :rtype: tuple of numpy array
    :return pd: principal directions

    """
    n, T = betamean.shape
    modes = ['O', 'C']
    mode = [i for i, x in enumerate(modes) if x == mode]
    if len(mode) == 0:
        mode = 0
    else:
        mode = mode[0]

    U, s, V = svd(K)

    qarray = empty((no, 2*N+1), dtype=object)
    qarray1 = empty(N, dtype=object)
    qarray2 = empty(N, dtype=object)
    pd = empty((no, 2*N+1), dtype=object)
    pd1 = empty(N, dtype=object)
    pd2 = empty(N, dtype=object)
    for m in range(0, no):
        princDir = vstack((U[0:T, m], U[T:2*T, m]))
        v = sqrt(s[m]) * princDir
        q1 = mu
        epsilon = 2./N

        # Forward direction from mean
        for i in range(0, N):
            normv = sqrt(cf.innerprod_q2(v, v))

            if normv < 1e-4:
                q2 = mu
            else:
                q2 = cos(epsilon*normv)*q1 + sin(epsilon*normv)*v/normv
                if mode == 1:
                    q2 = cf.project_curve(q2)

            qarray1[i] = q2
            p = cf.q_to_curve(q2)
            centroid1 = -1*cf.calculatecentroid(p)
            beta_scaled, scale = cf.scale_curve(p + tile(centroid1, [T, 1]).T)
            pd1[i] = beta_scaled

            # Parallel translate tangent vector
            basis2 = cf.find_basis_normal(q2)
            v = cf.parallel_translate(v, q1, q2, basis2, mode)

            q1 = q2

        # Backward direction from mean
        v = -sqrt(s[m])*princDir
        q1 = mu
        for i in range(0, N):
            normv = sqrt(cf.innerprod_q2(v, v))

            if normv < 1e-4:
                q2 = mu
            else:
                q2 = cos(epsilon*normv)*q1+sin(epsilon*normv)*v/normv
                if mode == 1:
                    q2 = cf.project_curve(q2)

            qarray2[i] = q2
            p = cf.q_to_curve(q2)
            centroid1 = -1*cf.calculatecentroid(p)
            beta_scaled, scale = cf.scale_curve(p + tile(centroid1, [T, 1]).T)
            pd2[i] = beta_scaled

            # Parallel translate tangent vector
            basis2 = cf.find_basis_normal(q2)
            v = cf.parallel_translate(v, q1, q2, basis2, mode)

            q1 = q2

        for i in range(0, N):
            qarray[m, i] = qarray2[(N-1)-i]
            pd[m, i] = pd2[(N-1)-i]

        qarray[m, N] = mu
        centroid1 = -1*cf.calculatecentroid(betamean)
        beta_scaled, scale = cf.scale_curve(betamean +
                                            tile(centroid1, [T, 1]).T)
        pd[m, N] = beta_scaled

        for i in range(N+1, 2*N+1):
            qarray[m, i] = qarray1[i-(N+1)]
            pd[m, i] = pd1[i-(N+1)]

    return(pd)
Beispiel #17
0
def curve_karcher_mean(beta, mode='O'):
    """
    This claculates the mean of a set of curves
    :param beta: numpy ndarray of shape (n, M, N) describing N curves
    in R^M
    :param mode: Open ('O') or closed curve ('C') (default 'O')

    :rtype: tuple of numpy array
    :return mu: mean srvf
    :return betamean: mean curve
    :return v: shooting vectors
    :return q: srvfs

    """
    n, T, N = beta.shape
    q = zeros((n, T, N))
    for ii in range(0, N):
        q[:, :, ii] = cf.curve_to_q(beta[:, :, ii])

    modes = ['O', 'C']
    mode = [i for i, x in enumerate(modes) if x == mode]
    if len(mode) == 0:
        mode = 0
    else:
        mode = mode[0]

    # Initialize mu as one of the shapes
    mu = q[:, :, 0]
    betamean = beta[:, :, 0]

    delta = 0.5
    tolv = 1e-4
    told = 5*1e-3
    maxit = 20
    itr = 0
    sumd = zeros(maxit+1)
    v = zeros((n, T, N))
    normvbar = zeros(maxit+1)

    while itr < maxit:
        print("Iteration: %d" % itr)

        mu = mu / sqrt(cf.innerprod_q2(mu, mu))

        sumv = zeros((2, T))
        sumd[itr+1] = 0
        out = Parallel(n_jobs=-1)(delayed(karcher_calc)(beta[:, :, n],
                                  q[:, :, n], betamean, mu, mode) for n in range(N))
        v = zeros((n, T, N))
        for i in range(0, N):
            v[:, :, i] = out[i][0]
            sumd[itr+1] = sumd[itr+1] + out[i][1]**2

        sumv = v.sum(axis=2)

        # Compute average direction of tangent vectors v_i
        vbar = sumv/float(N)

        normvbar[itr] = sqrt(cf.innerprod_q2(vbar, vbar))
        normv = normvbar[itr]

        if normv > tolv and fabs(sumd[itr+1]-sumd[itr]) > told:
            # Update mu in direction of vbar
            mu = cos(delta*normvbar[itr])*mu + sin(delta*normvbar[itr]) * vbar/normvbar[itr]

            if mode == 1:
                mu = cf.project_curve(mu)

            x = cf.q_to_curve(mu)
            a = -1*cf.calculatecentroid(x)
            betamean = x + tile(a, [T, 1]).T
        else:
            break

        itr += 1

    return(mu, betamean, v, q)
Beispiel #18
0
def init_path_rand(beta1, beta_mid, beta2, T=100, k=5):
    """
    Initializes a path in \cal{C}. beta1, beta_mid beta2 are already
    standardized curves. Creates a path from beta1 to beta_mid to beta2 in
    shape space, then projects to the closed shape manifold.

    :param beta1: numpy ndarray of shape (2,M) of M samples (first curve)
    :param betamid: numpy ndarray of shape (2,M) of M samples (mid curve)
    :param beta2: numpy ndarray of shape (2,M) of M samples (end curve)
    :param T: Number of samples of curve (Default = 100)
    :param k: number of samples along path (Default = 5)

    :rtype: numpy ndarray
    :return alpha: a path between two q-functions
    :return beta:  a path between two curves
    :return O: rotation matrix

    """
    alpha = zeros((2, T, k))
    beta = zeros((2, T, k))

    q1 = cf.curve_to_q(beta1)
    q_mid = cf.curve_to_q(beta_mid)

    # find optimal rotation of q2
    beta2, O1, tau1 = cf.find_rotation_and_seed_coord(beta1, beta2)
    q2 = cf.curve_to_q(beta2)

    # find the optimal coorespondence
    gam = cf.optimum_reparam_curve(q2, q1)
    gamI = uf.invertGamma(gam)

    # apply optimal reparametrization
    beta2n = cf.group_action_by_gamma_coord(beta2, gamI)

    # find optimal rotation of q2
    beta2n, O2, tau1 = cf.find_rotation_and_seed_coord(beta1, beta2n)
    centroid2 = cf.calculatecentroid(beta2n)
    beta2n = beta2n - tile(centroid2, [T, 1]).T
    q2n = cf.curve_to_q(beta2n)
    O = O1.dot(O2)

    # Initialize a path as a geodesic through q1 --- q_mid --- q2
    theta1 = arccos(cf.innerprod_q2(q1, q_mid))
    theta2 = arccos(cf.innerprod_q2(q_mid, q2n))
    tmp = arange(2, int((k - 1) / 2) + 1)
    t = zeros(tmp.size)
    alpha[:, :, 0] = q1
    beta[:, :, 0] = beta1

    i = 0
    for tau in range(2, int((k - 1) / 2) + 1):
        t[i] = (tau - 1.0) / ((k - 1) / 2.0)
        qnew = (1 / sin(theta1)) * (sin((1 - t[i]) * theta1) * q1 + sin(t[i] * theta1) * q_mid)
        alpha[:, :, tau - 1] = cf.project_curve(qnew)
        x = cf.q_to_curve(alpha[:, :, tau - 1])
        a = -1 * cf.calculatecentroid(x)
        beta[:, :, tau - 1] = x + tile(a, [T, 1]).T
        i += 1

    alpha[:, :, int((k - 1) / 2)] = q_mid
    beta[:, :, int((k - 1) / 2)] = beta_mid

    i = 0
    for tau in range(int((k - 1) / 2) + 1, k - 1):
        qnew = (1 / sin(theta2)) * (sin((1 - t[i]) * theta2) * q_mid + sin(t[i] * theta2) * q2n)
        alpha[:, :, tau] = cf.project_curve(qnew)
        x = cf.q_to_curve(alpha[:, :, tau])
        a = -1 * cf.calculatecentroid(x)
        beta[:, :, tau] = x + tile(a, [T, 1]).T
        i += 1

    alpha[:, :, k - 1] = q2n
    beta[:, :, k - 1] = beta2n

    return (alpha, beta, O)
Beispiel #19
0
def geod_sphere(beta1, beta2, k=5):
    """
    This function calculates the geodesics between open curves beta1 and
    beta2 with k steps along path

    :param beta1: numpy ndarray of shape (2,M) of M samples
    :param beta2: numpy ndarray of shape (2,M) of M samples
    :param k: number of samples along path (Default = 5)

    :rtype: numpy ndarray
    :return dist: geodesic distance
    :return path: geodesic path
    :return O: rotation matrix

    """
    lam = 0.0
    elastic = 1
    rotation = 1
    returnpath = 1
    n, T = beta1.shape

    beta1 = cf.resamplecurve(beta1, T)
    beta2 = cf.resamplecurve(beta2, T)

    centroid1 = cf.calculatecentroid(beta1)
    beta1 = beta1 - tile(centroid1, [T, 1]).T
    centroid2 = cf.calculatecentroid(beta2)
    beta2 = beta2 - tile(centroid2, [T, 1]).T

    q1 = cf.curve_to_q(beta1)
    if rotation:
        beta2, O1, tau = cf.find_rotation_and_seed_coord(beta1, beta2)
        q2 = cf.curve_to_q(beta2)
    else:
        O1 = eye(2)
        q2 = cf.curve_to_q(beta2)

    if elastic:
        # Find the optimal coorespondence
        gam = cf.optimum_reparam_curve(q2, q1, lam)
        gamI = uf.invertGamma(gam)
        # Applying optimal re-parameterization to the second curve
        beta2n = cf.group_action_by_gamma_coord(beta2, gamI)
        q2n = cf.curve_to_q(beta2n)

        if rotation:
            beta2n, O2, tau = cf.find_rotation_and_seed_coord(beta1, beta2n)
            centroid2 = cf.calculatecentroid(beta2n)
            beta2n = beta2n - tile(centroid2, [T, 1]).T
            q2n = cf.curve_to_q(beta2n)
            O = O1.dot(O2)
    else:
        q2n = q2
        O = O1

    # Forming geodesic between the registered curves
    dist = arccos(cf.innerprod_q2(q1, q2n))

    if returnpath:
        PsiQ = zeros((n, T, k))
        PsiX = zeros((n, T, k))
        for tau in range(0, k):
            s = dist * tau / (k - 1.)
            PsiQ[:, :, tau] = (sin(dist-s)*q1+sin(s)*q2n)/sin(dist)
            PsiX[:, :, tau] = cf.q_to_curve(PsiQ[:, :, tau])

        path = PsiQ
    else:
        path = 0

    return(dist, path, O)
Beispiel #20
0
def init_path_rand(beta1, beta_mid, beta2, T=100, k=5):
    r"""
    Initializes a path in :math:`\cal{C}`. beta1, beta_mid beta2 are already
    standardized curves. Creates a path from beta1 to beta_mid to beta2 in
    shape space, then projects to the closed shape manifold.

    :param beta1: numpy ndarray of shape (2,M) of M samples (first curve)
    :param betamid: numpy ndarray of shape (2,M) of M samples (mid curve)
    :param beta2: numpy ndarray of shape (2,M) of M samples (end curve)
    :param T: Number of samples of curve (Default = 100)
    :param k: number of samples along path (Default = 5)

    :rtype: numpy ndarray
    :return alpha: a path between two q-functions
    :return beta:  a path between two curves
    :return O: rotation matrix

    """
    alpha = zeros((2, T, k))
    beta = zeros((2, T, k))

    q1 = cf.curve_to_q(beta1)
    q_mid = cf.curve_to_q(beta_mid)

    # find optimal rotation of q2
    beta2, O1, tau1 = cf.find_rotation_and_seed_coord(beta1, beta2)
    q2 = cf.curve_to_q(beta2)

    # find the optimal coorespondence
    gam = cf.optimum_reparam_curve(q2, q1)
    gamI = uf.invertGamma(gam)

    # apply optimal reparametrization
    beta2n = cf.group_action_by_gamma_coord(beta2, gamI)

    # find optimal rotation of q2
    beta2n, O2, tau1 = cf.find_rotation_and_seed_coord(beta1, beta2n)
    centroid2 = cf.calculatecentroid(beta2n)
    beta2n = beta2n - tile(centroid2, [T, 1]).T
    q2n = cf.curve_to_q(beta2n)
    O = O1.dot(O2)

    # Initialize a path as a geodesic through q1 --- q_mid --- q2
    theta1 = arccos(cf.innerprod_q2(q1, q_mid))
    theta2 = arccos(cf.innerprod_q2(q_mid, q2n))
    tmp = arange(2, int((k-1)/2)+1)
    t = zeros(tmp.size)
    alpha[:, :, 0] = q1
    beta[:, :, 0] = beta1

    i = 0
    for tau in range(2, int((k-1)/2)+1):
        t[i] = (tau-1.)/((k-1)/2.)
        qnew = (1/sin(theta1))*(sin((1-t[i])*theta1)*q1+sin(t[i]*theta1)*q_mid)
        alpha[:, :, tau-1] = cf.project_curve(qnew)
        x = cf.q_to_curve(alpha[:, :, tau-1])
        a = -1*cf.calculatecentroid(x)
        beta[:, :, tau-1] = x + tile(a, [T, 1]).T
        i += 1

    alpha[:, :, int((k-1)/2)] = q_mid
    beta[:, :, int((k-1)/2)] = beta_mid

    i = 0
    for tau in range(int((k-1)/2)+1, k-1):
        qnew = (1/sin(theta2))*(sin((1-t[i])*theta2)*q_mid
                                + sin(t[i]*theta2)*q2n)
        alpha[:, :, tau] = cf.project_curve(qnew)
        x = cf.q_to_curve(alpha[:, :, tau])
        a = -1*cf.calculatecentroid(x)
        beta[:, :, tau] = x + tile(a, [T, 1]).T
        i += 1

    alpha[:, :, k-1] = q2n
    beta[:, :, k-1] = beta2n

    return(alpha, beta, O)
def curve_karcher_mean(beta, mode='O'):
    """
    This claculates the mean of a set of curves
    :param beta: numpy ndarray of shape (n, M, N) describing N curves
    in R^M
    :param mode: Open ('O') or closed curve ('C') (default 'O')

    :rtype: tuple of numpy array
    :return mu: mean srvf
    :return betamean: mean curve
    :return v: shooting vectors
    :return q: srvfs

    """
    n, T, N = beta.shape
    q = zeros((n, T, N))
    for ii in range(0, N):
        q[:, :, ii] = cf.curve_to_q(beta[:, :, ii])

    modes = ['O', 'C']
    mode = [i for i, x in enumerate(modes) if x == mode]
    if len(mode) == 0:
        mode = 0
    else:
        mode = mode[0]

    # Initialize mu as one of the shapes
    mu = q[:, :, 0]
    betamean = beta[:, :, 0]

    delta = 0.5
    tolv = 1e-4
    told = 5*1e-3
    maxit = 20
    itr = 0
    sumd = zeros(maxit+1)
    v = zeros((n, T, N))
    normvbar = zeros(maxit+1)

    while itr < maxit:
        print("Iteration: %d" % itr)

        mu = mu / sqrt(cf.innerprod_q2(mu, mu))

        sumv = zeros((2, T))
        sumd[itr+1] = 0
        out = Parallel(n_jobs=-1)(delayed(karcher_calc)(beta[:, :, n],
                                  q[:, :, n], betamean, mu, mode) for n in range(N))
        v = zeros((n, T, N))
        for i in range(0, N):
            v[:, :, i] = out[i][0]
            sumd[itr+1] = sumd[itr+1] + out[i][1]**2

        sumv = v.sum(axis=2)

        # Compute average direction of tangent vectors v_i
        vbar = sumv/float(N)

        normvbar[itr] = sqrt(cf.innerprod_q2(vbar, vbar))
        normv = normvbar[itr]

        if normv > tolv and fabs(sumd[itr+1]-sumd[itr]) > told:
            # Update mu in direction of vbar
            mu = cos(delta*normvbar[itr])*mu + sin(delta*normvbar[itr]) * vbar/normvbar[itr]

            if mode == 1:
                mu = cf.project_curve(mu)

            x = cf.q_to_curve(mu)
            a = -1*cf.calculatecentroid(x)
            betamean = x + tile(a, [T, 1]).T
        else:
            break

        itr += 1

    return(mu, betamean, v, q)
def curve_principal_directions(betamean, mu, K, mode='O', no=3, N=5):
    """
    Computes principal direction of variation specified by no. N is
    Number of shapes away from mean. Creates 2*N+1 shape sequence

    :param betamean: numpy ndarray of shape (n, M) describing the mean curve
    :param mu: numpy ndarray of shape (n, M) describing the mean srvf
    :param K: numpy ndarray of shape (M, M) describing the covariance
    :param mode: Open ('O') or closed curve ('C') (default 'O')
    :param no: number of direction (default 3)
    :param N: number of shapes (2*N+1) (default 5)

    :rtype: tuple of numpy array
    :return pd: principal directions

    """
    n, T = betamean.shape
    modes = ['O', 'C']
    mode = [i for i, x in enumerate(modes) if x == mode]
    if len(mode) == 0:
        mode = 0
    else:
        mode = mode[0]

    U, s, V = svd(K)

    qarray = empty((no, 2*N+1), dtype=object)
    qarray1 = empty(N, dtype=object)
    qarray2 = empty(N, dtype=object)
    pd = empty((no, 2*N+1), dtype=object)
    pd1 = empty(N, dtype=object)
    pd2 = empty(N, dtype=object)
    for m in range(0, no):
        princDir = vstack((U[0:T, m], U[T:2*T, m]))
        v = sqrt(s[m]) * princDir
        q1 = mu
        epsilon = 2./N

        # Forward direction from mean
        for i in range(0, N):
            normv = sqrt(cf.innerprod_q2(v, v))

            if normv < 1e-4:
                q2 = mu
            else:
                q2 = cos(epsilon*normv)*q1 + sin(epsilon*normv)*v/normv
                if mode == 1:
                    q2 = cf.project_curve(q2)

            qarray1[i] = q2
            p = cf.q_to_curve(q2)
            centroid1 = -1*cf.calculatecentroid(p)
            beta_scaled, scale = cf.scale_curve(p + tile(centroid1, [T, 1]).T)
            pd1[i] = beta_scaled

            # Parallel translate tangent vector
            basis2 = cf.find_basis_normal(q2)
            v = cf.parallel_translate(v, q1, q2, basis2, mode)

            q1 = q2

        # Backward direction from mean
        v = -sqrt(s[m])*princDir
        q1 = mu
        for i in range(0, N):
            normv = sqrt(cf.innerprod_q2(v, v))

            if normv < 1e-4:
                q2 = mu
            else:
                q2 = cos(epsilon*normv)*q1+sin(epsilon*normv)*v/normv
                if mode == 1:
                    q2 = cf.project_curve(q2)

            qarray2[i] = q2
            p = cf.q_to_curve(q2)
            centroid1 = -1*cf.calculatecentroid(p)
            beta_scaled, scale = cf.scale_curve(p + tile(centroid1, [T, 1]).T)
            pd2[i] = beta_scaled

            # Parallel translate tangent vector
            basis2 = cf.find_basis_normal(q2)
            v = cf.parallel_translate(v, q1, q2, basis2, mode)

            q1 = q2

        for i in range(0, N):
            qarray[m, i] = qarray2[(N-1)-i]
            pd[m, i] = pd2[(N-1)-i]

        qarray[m, N] = mu
        centroid1 = -1*cf.calculatecentroid(betamean)
        beta_scaled, scale = cf.scale_curve(betamean +
                                            tile(centroid1, [T, 1]).T)
        pd[m, N] = beta_scaled

        for i in range(N+1, 2*N+1):
            qarray[m, i] = qarray1[i-(N+1)]
            pd[m, i] = pd1[i-(N+1)]

    return(pd)
Beispiel #23
0
def geod_sphere(beta1, beta2, k=5, scale=False, rotation=True, center=True):
    """
    This function calculates the geodesics between open curves beta1 and
    beta2 with k steps along path

    :param beta1: numpy ndarray of shape (2,M) of M samples
    :param beta2: numpy ndarray of shape (2,M) of M samples
    :param k: number of samples along path (Default = 5)
    :param scale: include length (Default = False)
    :param rotation: include rotation (Default = True)
    :param center: center curves at origin (Default = True)

    :rtype: numpy ndarray
    :return dist: geodesic distance
    :return path: geodesic path
    :return O: rotation matrix

    """
    lam = 0.0
    returnpath = 1
    n, T = beta1.shape

    if center:
        centroid1 = cf.calculatecentroid(beta1)
        beta1 = beta1 - tile(centroid1, [T, 1]).T
        centroid2 = cf.calculatecentroid(beta2)
        beta2 = beta2 - tile(centroid2, [T, 1]).T

    q1, len1, lenq1 = cf.curve_to_q(beta1)
    if scale:
        q2, len2, lenq2 = cf.curve_to_q(beta2)
    beta2, q2n, O1, gamI = cf.find_rotation_and_seed_coord(beta1,
                                                           beta2,
                                                           rotation=rotation)

    # Forming geodesic between the registered curves
    val = cf.innerprod_q2(q1, q2n)
    if val > 1:
        if val < 1.0001:  # assume numerical error
            import warnings
            warnings.warn(
                f"Corrected a numerical error in geod_sphere: rounded {val} to 1"
            )
            val = 1
        else:
            raise Exception(
                f"innerpod_q2 computed an inner product of {val} which is much greater than 1"
            )
    elif val < -1:
        if val > -1.0001:  # assume numerical error
            import warnings
            warnings.warn(
                f"Corrected a numerical error in geod_sphere: rounded {val} to -1"
            )
            val = -1
        else:
            raise Exception(
                f"innerpod_q2 computed an inner product of {val} which is much less than -1"
            )

    dist = arccos(val)
    if isnan(dist):
        raise Exception("geod_sphere computed a dist value which is NaN")

    if returnpath:
        PsiQ = zeros((n, T, k))
        PsiX = zeros((n, T, k))
        for tau in range(0, k):
            if tau == 0:
                tau1 = 0
            else:
                tau1 = tau / (k - 1.)

            s = dist * tau1
            if dist > 0:
                PsiQ[:, :,
                     tau] = (sin(dist - s) * q1 + sin(s) * q2n) / sin(dist)
            elif dist == 0:
                PsiQ[:, :, tau] = (1 - tau1) * q1 + (tau1) * q2n
            else:
                raise Exception("geod_sphere computed a negative distance")

            if scale:
                scl = len1**(1 - tau1) * len2**(tau1)
            else:
                scl = 1
            beta = scl * cf.q_to_curve(PsiQ[:, :, tau])
            if center:
                centroid = cf.calculatecentroid(beta)
                beta = beta - tile(centroid, [T, 1]).T
            PsiX[:, :, tau] = beta

        path = PsiX
    else:
        path = 0

    return (dist, path, PsiQ)